python从入门到精通——完整教程

阅读全文点击《python从入门到精通------完整教程》

一、编程入门与进阶提高

Python编程入门

1、Python环境搭建( 下载、安装与版本选择)。

2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter...)

3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调用等)

4、常见的错误与程序调试

5、第三方模块的安装与使用

6、文件读写(I/O)

Python进阶与提高

1、Numpy模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

2、Pandas模块库(DataFrame数据结构、表格的变换、排序、拼接、融合、分组操作等)

3、Matplotlib基本图形绘制(线形图、柱状图、饼图、气泡图、直方图、箱线图、散点图等)

4、图形样式的美化(颜色、线型、标记、字体等属性的修改)

5、图形的布局(多个子图绘制、规则与不规则布局绘制、向画布中任意位置添加坐标轴)

6、高级图形绘制(3D图、等高线图、棉棒图、哑铃图、漏斗图、树状图、华夫饼图等)

7、坐标轴高阶应用(共享绘图区域的坐标轴、坐标轴刻度样式设置、控制坐标轴的显示、移动坐标轴的位置)

二、科研数据可视化

Seaborn图形绘制

1、Seaborn简介与安装

2、Seaborn基本图像的绘制(统计关系、分类数据、数据集分布等)

3、Seaborn风格与颜色管理

4、Seaborn多图的绘制

Pyecharts图形绘制

1、Pyecahrts简介与安装

2、Pyecharts基础知识(快速绘制图表、认识图表类、配置项、渲染图表)

3、常用图表的绘制(折线图、饼图、圆环图、散点图、柱状图、漏斗图、桑基图等)

4、组合图表的绘制(并行多图、顺序多图、选项卡多图、时间线轮播多图等)

三、信息检索与常用科研工具

1、如何无障碍地访问Google、YouTube等网站?(谷歌访问助手、VPN等)

2、如何查阅文献资料?怎样能够保证对最新论文的追踪?

3、Google Scholar、ResearchGate的使用方法

4、应该去哪些地方查找与论文配套的数据和代码?

5、文献管理工具的使用(Endnote、Zotero等)

6、当代码出现错误时,应该如何高效率解决?

四、科技论文写作与技巧

1、科技论文结构解析(Title、Abstract、Keywords、Introduction、Materials & Methods、Results、Discussion、Conclusion、References)

2、如何高效率撰写专业论文?

3、SCI不同分区的论文差别在哪些地方?

4、从审稿人的角度看,SCI期刊论文需要具备哪些要素?(审稿人关注的点有哪些?如何回应审稿人提出的意见?)

5、如何提炼与挖掘创新点?(如果在算法层面上难以做出原创性的工作,如何结合自己的实际问题提炼与挖掘创新点?)

五、数据预处理与特征工程

数据预处理与特征工程

1、描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:算数平均值标准差;数据的分布可视化;数据的相关分析:相关系数)

2、Model-Centric AI与Data Centric AI的本质区别与联系

3、数据异常值、缺失值处理

4、数据离散化及编码处理

5、手动生成新特征

6、数据标准化与归一化(为什么需要标准化与归一化?)

六、多元线性回归

1、多元线性回归模型(回归参数的估计、回归方程的系数)

2、岭回归模型(工作原理、岭参数k的选择、用岭回归选择变量)

3、LASSO模型(工作原理、特征选择、建模预测、超参数调节)

4、Elastic Net模型(工作原理、建模预测、超参数调节)

七、机器学习

前向型神经网络

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、BP神经网络的Python代码实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?)

3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计等)

5、案例演示一:近红外光谱汽油辛烷值预测(回归拟合)

6、案例演示二:MNIST手写数字识别(分类识别)

支持向量机、决策树、随机森林、XGBoost和LightGBM

1、SVM的基本原理(SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?)

2、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?)

3、决策树的基本原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

4、随机森林的基本原理(为什么需要随机森林算法?广义与狭义意义下的"随机森林"分别指的是什么?"随机"提现在哪些地方?随机森林的本质是什么?)怎样可视化、解读随机森林的结果?

5、Bagging与Boosting的区别与联系

6、AdaBoost vs. Gradient Boosting的工作原理

7、 常用的GBDT算法框架(XGBoost、LightGBM)

8、SVM、决策树、随机森林、XGBoost和LightGBM的Python代码实现

9、案例实践一:乳腺癌肿瘤诊断

10、案例实践二:混凝土强度预测

群优化算法

1、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?目前国内外的研究热点在哪些方面?)

2、遗传算法的Python代码实现

3、案例实践一:一元函数的寻优计算(极大值与极小值)

4、案例实践二:离散变量的寻优计算(基于遗传算法的特征变量筛选)

八、深度学习

1、深度学习与传统机器学习的区别与联系(隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?)

2、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?)

3、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet 等经典深度神经网络的区别与联系

4、Pytorch深度学习框架简介、PyTorch的安装与环境配置

5、PyTorch常用工具包及API简介:张量Tensor的定义、属性、创建、运算、索引与切片、torchvision(transforms、datasets、model)、torch.nn、torch.optim、torch.utils(Dataset、DataLoader)

6、预训练模型(Alexnet、Vgg-16/19、GoogLeNet、ResNet 等)

网络优化调参技巧

1、网络拓扑结构优化

2、优化算法(梯度下降、随机梯度下降、小批量随机梯度下降、动量法、 Adam 等)

3、调参技巧(参数初始化、数据预处理、数据扩增、批量归一化、超参数优化、网络正则化等)

迁移学习

1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?)

2、基于深度神经网络模型的迁移学习算法

循环神经网络长短时记忆神经网络

1、循环神经网络(RNN)的基本原理

2、长短时记忆神经网络(LSTM)的基本原理

3、RNN与LSTM的区别与联系

生成式对抗网络

1、生成式对抗网络 GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN 给我们带来的启示)

2、GAN 的基本原理

自编码器

1、自编码器的组成及基本工作原理

2、自编码器的变种(栈式自编码器、稀疏自编码器、去噪自编码器、卷积自编码器、掩码自编码器等)及其工作原理

YOLO目标检测算法

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO 模型的工作原理

阅读全文点击《python从入门到精通------完整教程》

相关推荐
IT古董18 分钟前
【深度学习】常见模型-Transformer模型
人工智能·深度学习·transformer
摸鱼仙人~2 小时前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
python算法(魔法师版)2 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
小王子10242 小时前
设计模式Python版 组合模式
python·设计模式·组合模式
kakaZhui2 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20253 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
Mason Lin4 小时前
2025年1月22日(网络编程 udp)
网络·python·udp
清弦墨客4 小时前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
RZer6 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos
davenian6 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek