C# OpenCvSharp DNN 二维码增强 超分辨率

效果

项目

代码

cs 复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using OpenCvSharp.Extensions;

namespace OpenCvSharp_DNN_二维码增强
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        Bitmap bmp;
        String imgPath = "";

        const string prototxt_path = "sr.prototxt";
        const string caffe_model_path = "sr.caffemodel";

        private void button2_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            imgPath = ofd.FileName;
            bmp = new Bitmap(imgPath);
            pictureBox1.Image = bmp;

        }

        private void button1_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }

            var src = Cv2.ImRead(imgPath, ImreadModes.Grayscale);
            var srnet = CvDnn.ReadNetFromCaffe(prototxt_path, caffe_model_path);
            Mat blob = CvDnn.BlobFromImage(src, 1.0 / 255, src.Size(), new Scalar(0.0f), false, false);
            srnet.SetInput(blob);
            var prob = srnet.Forward();
            var dst = new Mat(prob.Size(2), prob.Size(3), MatType.CV_8UC1);
            for (int row = 0; row < prob.Size(2); row++)
            {
                for (int col = 0; col < prob.Size(3); col++)
                {
                    float pixel = prob.At<float>(0, 0, row, col) * 255;
                    dst.Set<byte>(row, col, (byte)(Math.Max(0, Math.Min(pixel, 255f))));
                }
            }
            pictureBox2.Image = BitmapConverter.ToBitmap(dst);

            // Cv2.ImShow("src", src);
            // Cv2.ImShow("dst", dst);
        }
    }
}

Demo下载

相关推荐
AI人工智能+6 分钟前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
用户51914958484513 分钟前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe15 分钟前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
说私域18 分钟前
开源链动2+1模式AI智能名片S2B2C商城小程序在竞争激烈的中低端面膜服装行业中的应用与策略
大数据·人工智能·小程序
佛喜酱的AI实践20 分钟前
Claude Code配置魔法:从单人编程到专属AI团队协作
人工智能·claude
文心快码BaiduComate22 分钟前
文心快码Comate3.5S更新,用多智能体协同做个健康管理应用
前端·人工智能·后端
叶楊24 分钟前
PEFT适配器加载
人工智能·深度学习·机器学习
Tezign_space30 分钟前
AI用户洞察新纪元:atypica.AI如何重塑商业决策逻辑
人工智能·ai智能体·atypica
却道天凉_好个秋32 分钟前
OpenCV(十一):色彩空间转换
人工智能·opencv·计算机视觉
AI街潜水的八角34 分钟前
垃圾桶满溢检测和识别2:基于深度学习YOLOv12神经网络实现垃圾桶满溢检测和识别(含训练代码和数据集)
深度学习·神经网络·yolo