C# OpenCvSharp DNN 二维码增强 超分辨率

效果

项目

代码

cs 复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using OpenCvSharp.Extensions;

namespace OpenCvSharp_DNN_二维码增强
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        Bitmap bmp;
        String imgPath = "";

        const string prototxt_path = "sr.prototxt";
        const string caffe_model_path = "sr.caffemodel";

        private void button2_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            imgPath = ofd.FileName;
            bmp = new Bitmap(imgPath);
            pictureBox1.Image = bmp;

        }

        private void button1_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }

            var src = Cv2.ImRead(imgPath, ImreadModes.Grayscale);
            var srnet = CvDnn.ReadNetFromCaffe(prototxt_path, caffe_model_path);
            Mat blob = CvDnn.BlobFromImage(src, 1.0 / 255, src.Size(), new Scalar(0.0f), false, false);
            srnet.SetInput(blob);
            var prob = srnet.Forward();
            var dst = new Mat(prob.Size(2), prob.Size(3), MatType.CV_8UC1);
            for (int row = 0; row < prob.Size(2); row++)
            {
                for (int col = 0; col < prob.Size(3); col++)
                {
                    float pixel = prob.At<float>(0, 0, row, col) * 255;
                    dst.Set<byte>(row, col, (byte)(Math.Max(0, Math.Min(pixel, 255f))));
                }
            }
            pictureBox2.Image = BitmapConverter.ToBitmap(dst);

            // Cv2.ImShow("src", src);
            // Cv2.ImShow("dst", dst);
        }
    }
}

Demo下载

相关推荐
聚客AI9 分钟前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_3875456428 分钟前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2371 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro1 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm1 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl1 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~2 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进2 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木2 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan772 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归