C# OpenCvSharp DNN 二维码增强 超分辨率

效果

项目

代码

cs 复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;
using OpenCvSharp.Dnn;
using OpenCvSharp.Extensions;

namespace OpenCvSharp_DNN_二维码增强
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        private string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        Bitmap bmp;
        String imgPath = "";

        const string prototxt_path = "sr.prototxt";
        const string caffe_model_path = "sr.caffemodel";

        private void button2_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            imgPath = ofd.FileName;
            bmp = new Bitmap(imgPath);
            pictureBox1.Image = bmp;

        }

        private void button1_Click(object sender, EventArgs e)
        {
            if (pictureBox1.Image == null)
            {
                return;
            }

            var src = Cv2.ImRead(imgPath, ImreadModes.Grayscale);
            var srnet = CvDnn.ReadNetFromCaffe(prototxt_path, caffe_model_path);
            Mat blob = CvDnn.BlobFromImage(src, 1.0 / 255, src.Size(), new Scalar(0.0f), false, false);
            srnet.SetInput(blob);
            var prob = srnet.Forward();
            var dst = new Mat(prob.Size(2), prob.Size(3), MatType.CV_8UC1);
            for (int row = 0; row < prob.Size(2); row++)
            {
                for (int col = 0; col < prob.Size(3); col++)
                {
                    float pixel = prob.At<float>(0, 0, row, col) * 255;
                    dst.Set<byte>(row, col, (byte)(Math.Max(0, Math.Min(pixel, 255f))));
                }
            }
            pictureBox2.Image = BitmapConverter.ToBitmap(dst);

            // Cv2.ImShow("src", src);
            // Cv2.ImShow("dst", dst);
        }
    }
}

Demo下载

相关推荐
lucky_lyovo7 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn12 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy16 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道39 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域41 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶42 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域42 分钟前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源
群联云防护小杜44 分钟前
深度隐匿源IP:高防+群联AI云防护防绕过实战
运维·服务器·前端·网络·人工智能·网络协议·tcp/ip
摘星编程1 小时前
构建智能客服Agent:从需求分析到生产部署
人工智能·需求分析·智能客服·agent开发·生产部署
不爱学习的YY酱1 小时前
信息检索革命:Perplexica+cpolar打造你的专属智能搜索中枢
人工智能