神经网络基础-神经网络补充概念-54-softmax回归

概念

Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。它是Logistic回归在多分类问题上的推广。

原理

Softmax回归的主要思想是将原始的线性分数(得分)转化为类别概率分布,使得模型可以对多个类别进行分类。在Softmax回归中,每个类别都有一个权重向量和偏置项,将输入特征与权重相乘并添加偏置,然后通过Softmax函数将分数转化为概率。

Softmax函数可以将一个K维的向量(K个类别的分数)映射成一个K维的概率分布。假设有K个类别,对于给定的输入向量x,Softmax函数的计算公式如下:

其中, P ( y = i ∣ x ) P(y=i | x) P(y=i∣x) 表示在给定输入x的情况下,样本属于第i个类别的概率, z i z_i zi 是输入x在第i个类别上的得分。Softmax函数的分母是对所有类别的得分进行指数运算后的和。

Softmax回归的训练过程通常使用交叉熵损失函数(Cross-Entropy Loss),用于衡量模型预测的概率分布与真实标签的差距。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD
from sklearn.preprocessing import OneHotEncoder

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(3, size=(100, 1))

# 对标签进行独热编码
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(y)

# 构建Softmax回归模型
model = Sequential()
model.add(Dense(3, input_dim=10, activation='softmax'))

# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X, y_onehot, epochs=50, batch_size=32)
相关推荐
龚大龙10 分钟前
机器学习(李宏毅)——Domain Adaptation
人工智能·机器学习
源码姑娘17 分钟前
基于DeepSeek的智慧医药系统(源码+部署教程)
java·人工智能·程序人生·毕业设计·springboot·健康医疗·课程设计
☞黑心萝卜三条杠☜1 小时前
后门攻击仓库 backdoor attack
论文阅读·人工智能
三三木木七1 小时前
BERT、T5、GPTs,Llama
人工智能·深度学习·bert
problc2 小时前
Manus AI 全球首款通用型 Agent,中国制造
大数据·人工智能·制造
xiangzhihong82 小时前
GitHub神秘组织3小时极速复刻Manus
人工智能·深度学习·机器学习
博云技术社区2 小时前
DeepSeek×博云AIOS:突破算力桎梏,开启AI普惠新纪元
人工智能·博云·deepseek
ZHOU_WUYI2 小时前
Process-based Self-Rewarding Language Models 论文简介
人工智能·深度学习
优维科技EasyOps3 小时前
优维眼中的Manus:AI工程化思维重构Agent的运维端启示
运维·人工智能·重构
碣石潇湘无限路3 小时前
【奇点时刻】通义千问开源QwQ-32B技术洞察报告(扫盲帖)
人工智能·开源