神经网络基础-神经网络补充概念-54-softmax回归

概念

Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。它是Logistic回归在多分类问题上的推广。

原理

Softmax回归的主要思想是将原始的线性分数(得分)转化为类别概率分布,使得模型可以对多个类别进行分类。在Softmax回归中,每个类别都有一个权重向量和偏置项,将输入特征与权重相乘并添加偏置,然后通过Softmax函数将分数转化为概率。

Softmax函数可以将一个K维的向量(K个类别的分数)映射成一个K维的概率分布。假设有K个类别,对于给定的输入向量x,Softmax函数的计算公式如下:

其中, P ( y = i ∣ x ) P(y=i | x) P(y=i∣x) 表示在给定输入x的情况下,样本属于第i个类别的概率, z i z_i zi 是输入x在第i个类别上的得分。Softmax函数的分母是对所有类别的得分进行指数运算后的和。

Softmax回归的训练过程通常使用交叉熵损失函数(Cross-Entropy Loss),用于衡量模型预测的概率分布与真实标签的差距。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD
from sklearn.preprocessing import OneHotEncoder

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(3, size=(100, 1))

# 对标签进行独热编码
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(y)

# 构建Softmax回归模型
model = Sequential()
model.add(Dense(3, input_dim=10, activation='softmax'))

# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X, y_onehot, epochs=50, batch_size=32)
相关推荐
云边云科技4 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00114 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
Monkey的自我迭代31 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手31 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户51914958484540 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
Black_Rock_br1 小时前
本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定
人工智能·音视频
用什么都重名1 小时前
《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
人工智能·大模型·openai·gpt-oss
CV-杨帆2 小时前
使用LLaMA-Factory的数据集制作流程与训练微调Qwen3及评估
人工智能