神经网络基础-神经网络补充概念-54-softmax回归

概念

Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。它是Logistic回归在多分类问题上的推广。

原理

Softmax回归的主要思想是将原始的线性分数(得分)转化为类别概率分布,使得模型可以对多个类别进行分类。在Softmax回归中,每个类别都有一个权重向量和偏置项,将输入特征与权重相乘并添加偏置,然后通过Softmax函数将分数转化为概率。

Softmax函数可以将一个K维的向量(K个类别的分数)映射成一个K维的概率分布。假设有K个类别,对于给定的输入向量x,Softmax函数的计算公式如下:

其中, P ( y = i ∣ x ) P(y=i | x) P(y=i∣x) 表示在给定输入x的情况下,样本属于第i个类别的概率, z i z_i zi 是输入x在第i个类别上的得分。Softmax函数的分母是对所有类别的得分进行指数运算后的和。

Softmax回归的训练过程通常使用交叉熵损失函数(Cross-Entropy Loss),用于衡量模型预测的概率分布与真实标签的差距。

代码实现

python 复制代码
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import SGD
from sklearn.preprocessing import OneHotEncoder

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 10)
y = np.random.randint(3, size=(100, 1))

# 对标签进行独热编码
encoder = OneHotEncoder(sparse=False)
y_onehot = encoder.fit_transform(y)

# 构建Softmax回归模型
model = Sequential()
model.add(Dense(3, input_dim=10, activation='softmax'))

# 编译模型
model.compile(optimizer=SGD(lr=0.01), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X, y_onehot, epochs=50, batch_size=32)
相关推荐
g***B7382 小时前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构
Shawn_Shawn4 小时前
大模型的奥秘:Token与Transformer简单理解
人工智能·llm
weixin_377634846 小时前
【K-S 检验】Kolmogorov–Smirnov计算过程与示例
人工智能·深度学习·机器学习
菜鸟起航ing6 小时前
Spring AI 全方位指南:从基础入门到高级实战
java·人工智能·spring
Guheyunyi6 小时前
智慧消防管理系统如何重塑安全未来
大数据·运维·服务器·人工智能·安全
ZZY_dl7 小时前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d7 小时前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心7 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
爱好读书7 小时前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio7 小时前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能