python 打印一个条形图

背景

在python 中,使用 matplot 生成图表是一个很常用的方法,但在一些轻量级需求场合,例如仅做一个打印预览,或者快速查看,这些场景下调用 matplot 生成图表,略显繁琐。

今天介绍一个通过 DebugInfo 模块打印条形图的方法,简单实用。

引入模块

bash 复制代码
pip install DebugInfo

打印销售转化数据

下面的代码对一组销售转化数据 进行了条形图显示。

python 复制代码
# -*- coding:UTF-8 -*-

# region 引入调试模块
import random
from DebugInfo.DebugInfo import *

# endregion

白板 = 调试模板()
白板.准备表格()

# 假如你已经整理完成了数据, 这里是样例数据
销售转化数据 = {'广告曝光': random.randrange(94, 98),
               '链接跳转': random.randrange(80, 90),
               '加购物车': random.randrange(75, 80),
               '生成订单': random.randrange(65, 74),
               '提交支付': random.randrange(40, 60),
               '完成支付': random.randrange(25, 40),
               '售后退款': random.randrange(1, 5)}

# 第一行作为标题
白板.添加一行('节点', '进度', '转化率', '备注').修饰行(青字)

# 第二行第二列打印 100 个 - 作为 100% 参考线
白板.添加一行('', '{}'.format(白板.分隔线.总长度(100).提示内容('100%参考线').修饰方法(黄字)))

# 把业务数据依次添加到表格中
for 节点, 转化率 in 销售转化数据.items():
    白板.添加一行(节点, '{}'.format('▉' * 转化率), 黄字('{}%'.format(转化率)))

# 展示你的表格
白板.分隔线.总长度(白板.表格宽度()).提示内容('一般条形图效果演示, 转化率对齐').修饰方法(红字).展示()
白板.展示表格()

以上代码中,我们通过将销售转化数据归一处理为百分比值,然后通过打印对应数量的 ▉ 来体数值的大小,连续打印 ▉ 在 terminal 窗口下会显示成连续的长方形。以上代码运行效果如下:

转化率值跟随条形图显示

以上代码中,我们如果将转化率值组合在 ▉ 符号后面,则可以将转化率值跟随条形图打印,代码如下:

python 复制代码
# -*- coding:UTF-8 -*-

# region 引入调试模块
import random
from DebugInfo.DebugInfo import *

# endregion

白板 = 调试模板()
白板.准备表格()

# 假如你已经整理完成了数据,这里是样例数据
销售转化数据 = {'广告曝光': random.randrange(94, 98),
               '链接跳转': random.randrange(80, 90),
               '加购物车': random.randrange(75, 80),
               '生成订单': random.randrange(65, 74),
               '提交支付': random.randrange(40, 60),
               '完成支付': random.randrange(25, 40),
               '售后退款': random.randrange(1, 5)}

# 第一行作为标题
白板.添加一行('节点', '进度/转化率', '备注').修饰行(青字)

# 第二行第二列打印 100 个 - 作为 100% 参考线
白板.添加一行('', '{} {}'.format(白板.分隔线.总长度(100).提示内容('100%参考线').修饰方法(黄字), 黄字('xxx%')), '转化率 跟随显示在 bar 后')

# 把业务数据依次添加到表格中
for 节点, 转化率 in 销售转化数据.items():
    白板.添加一行(节点, '{} {}'.format('▉' * 转化率, 黄字('{}%'.format(转化率))))

# 展示你的表格
白板.分隔线.总长度(白板.表格宽度()).提示内容('一般条形图效果演示: 转化率跟随').修饰方法(红字).展示()
白板.展示表格()

代码输出如下:

销售转化漏斗

以上销售转化数据,只要将条形的对齐方式调整为对齐方式,即可打印一个漏斗图,代码如下:

python 复制代码
# -*- coding:UTF-8 -*-

# region 引入调试模块
import random
from DebugInfo.DebugInfo import *

# endregion

白板 = 调试模板()
白板.准备表格(对齐控制串='lc')  # 第一列 左对齐, 第二列 居中对齐, 其它未设置列默认 左对齐

# 假如你已经整理完成了数据,这里是样例数据
销售转化数据 = {'广告曝光': random.randrange(94, 98),
               '链接跳转': random.randrange(80, 90),
               '加购物车': random.randrange(75, 80),
               '生成订单': random.randrange(65, 74),
               '提交支付': random.randrange(40, 60),
               '完成支付': random.randrange(25, 40),
               '售后退款': random.randrange(1, 5)}

# 第一行作为标题
白板.添加一行('节点', '进度', '转化率', '备注').修饰行(青字)

# 第二行第二列打印 100 个 - 作为 100% 参考线
白板.添加一行('', '{}'.format(白板.分隔线.总长度(100).提示内容('100%参考线').修饰方法(黄字)))

# 把业务数据依次添加到表格中
for 节点, 转化率 in 销售转化数据.items():
    白板.添加一行(节点, '{}'.format('▉' * 转化率), 黄字('{}%'.format(转化率)))

# 展示你的表格
白板.分隔线.总长度(白板.表格宽度()).提示内容('一般条形图/漏斗图效果演示, 转化率对齐').修饰方法(红字).展示()
白板.展示表格()

以上代码中,在准备表格时,将对齐控制串设置为 'lc' 模式,根据代码中的注释,这将使得第二列的数据(即条形图列)以居中对齐的方式打印,形成漏斗图。以上代码输出效果如下:

小结

以上就是今天分享的使用 DebugInfo模块输出条形图的使用方法了,希望可以帮到大家。

相关推荐
阿部多瑞 ABU4 分钟前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
acanab8 分钟前
VScode python插件
ide·vscode·python
知乎的哥廷根数学学派1 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
WangYaolove13141 小时前
Python基于大数据的电影市场预测分析(源码+文档)
python·django·毕业设计·源码
知乎的哥廷根数学学派2 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
cnxy1883 小时前
Python爬虫进阶:反爬虫策略与Selenium自动化完整指南
爬虫·python·selenium
用户8356290780513 小时前
Python 实现 Excel 条件格式自动化
后端·python
深蓝电商API4 小时前
Scrapy管道Pipeline深度解析:多方式数据持久化
爬虫·python·scrapy
噎住佩奇4 小时前
(Win11系统)搭建Python爬虫环境
爬虫·python
basketball6164 小时前
python 的对象序列化
开发语言·python