无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

这里写目录标题

官方定义

Dropout是一种常用的正则化 方法,通过随机将部分神经元的输出置为0来减少过拟合

Dropout在训练时随机讲某些张量的值设为0,从而减少模型对训练数据的依赖程序,提高泛化能力;同时在测试时需要关闭Dropout,具体来说,如果处于model.eval模式时,并不会使用Dropout。

官方的文档如下,torch.nn.Dropout:

demo

下面是一个官方文档给出的例子:

python 复制代码
import torch
import torch.nn as nn

m = nn.Dropout(p=0.2)
input = torch.randn(20, 16)
output = m(input)

print(input[0])
print(output[0])

输出的结果:

我们会发现:

  1. 有一部分的值变为了0,这些值大约占据总数的0.2。
  2. 其它非0参数都除以0.8 ,使得值变大了。比如:0.3514 / 0.8 = 0.4392-1.0317 / 0.8 = -1.2896

Dropout的位置

一般来说,我们在实现的神级网络中这么定义:

复制代码
self.dropout = nn.Dropout(0.3)

但是具体在哪里使用是个问题。

一般来说,Dropout使用位置是在隐藏层之间的节点上,具体来说,就是在全连接层之间放置Dropout来避免过拟合:

复制代码
import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_size)
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, out_features)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = torch.relu(x)
        x = self.fc2(x)
        return x

比如上面得这个例子,dropout被放置在fc1和fc2之间。

相关推荐
2401_841495641 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
Adorable老犀牛1 小时前
阿里云-ECS实例信息统计并发送统计报告到企业微信
python·阿里云·云计算·企业微信
倔强青铜三1 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试
倔强青铜三2 小时前
苦练Python第65天:CPU密集型任务救星!多进程multiprocessing模块实战解析,攻破GIL限制!
人工智能·python·面试
Panda__Panda2 小时前
docker项目打包演示项目(数字排序服务)
运维·javascript·python·docker·容器·c#
强哥之神2 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
zskj_qcxjqr2 小时前
七彩喜艾灸机器人:当千年中医智慧遇上现代科技
大数据·人工智能·科技·机器人
Lris-KK2 小时前
力扣Hot100--94.二叉树的中序遍历、144.二叉树的前序遍历、145.二叉树的后序遍历
python·算法·leetcode
Zack_Liu3 小时前
深度学习基础模块
人工智能·深度学习
zy_destiny3 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪