无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

这里写目录标题

官方定义

Dropout是一种常用的正则化 方法,通过随机将部分神经元的输出置为0来减少过拟合

Dropout在训练时随机讲某些张量的值设为0,从而减少模型对训练数据的依赖程序,提高泛化能力;同时在测试时需要关闭Dropout,具体来说,如果处于model.eval模式时,并不会使用Dropout。

官方的文档如下,torch.nn.Dropout:

demo

下面是一个官方文档给出的例子:

python 复制代码
import torch
import torch.nn as nn

m = nn.Dropout(p=0.2)
input = torch.randn(20, 16)
output = m(input)

print(input[0])
print(output[0])

输出的结果:

我们会发现:

  1. 有一部分的值变为了0,这些值大约占据总数的0.2。
  2. 其它非0参数都除以0.8 ,使得值变大了。比如:0.3514 / 0.8 = 0.4392-1.0317 / 0.8 = -1.2896

Dropout的位置

一般来说,我们在实现的神级网络中这么定义:

self.dropout = nn.Dropout(0.3)

但是具体在哪里使用是个问题。

一般来说,Dropout使用位置是在隐藏层之间的节点上,具体来说,就是在全连接层之间放置Dropout来避免过拟合:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_size)
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, out_features)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = torch.relu(x)
        x = self.fc2(x)
        return x

比如上面得这个例子,dropout被放置在fc1和fc2之间。

相关推荐
LZXCyrus8 分钟前
【杂记】vLLM如何指定GPU单卡/多卡离线推理
人工智能·经验分享·python·深度学习·语言模型·llm·vllm
Enougme11 分钟前
Appium常用的使用方法(一)
python·appium
懷淰メ16 分钟前
PyQt飞机大战游戏(附下载地址)
开发语言·python·qt·游戏·pyqt·游戏开发·pyqt5
我感觉。25 分钟前
【机器学习chp4】特征工程
人工智能·机器学习·主成分分析·特征工程
hummhumm30 分钟前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
YRr YRr34 分钟前
深度学习神经网络中的优化器的使用
人工智能·深度学习·神经网络
DieYoung_Alive34 分钟前
一篇文章了解机器学习(下)
人工智能·机器学习
夏沫的梦36 分钟前
生成式AI对产业的影响与冲击
人工智能·aigc
hummhumm1 小时前
第 28 章 - Go语言 Web 开发入门
java·开发语言·前端·python·sql·golang·前端框架
goomind1 小时前
YOLOv8实战木材缺陷识别
人工智能·yolo·目标检测·缺陷检测·pyqt5·木材缺陷识别