无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

这里写目录标题

官方定义

Dropout是一种常用的正则化 方法,通过随机将部分神经元的输出置为0来减少过拟合

Dropout在训练时随机讲某些张量的值设为0,从而减少模型对训练数据的依赖程序,提高泛化能力;同时在测试时需要关闭Dropout,具体来说,如果处于model.eval模式时,并不会使用Dropout。

官方的文档如下,torch.nn.Dropout:

demo

下面是一个官方文档给出的例子:

python 复制代码
import torch
import torch.nn as nn

m = nn.Dropout(p=0.2)
input = torch.randn(20, 16)
output = m(input)

print(input[0])
print(output[0])

输出的结果:

我们会发现:

  1. 有一部分的值变为了0,这些值大约占据总数的0.2。
  2. 其它非0参数都除以0.8 ,使得值变大了。比如:0.3514 / 0.8 = 0.4392-1.0317 / 0.8 = -1.2896

Dropout的位置

一般来说,我们在实现的神级网络中这么定义:

复制代码
self.dropout = nn.Dropout(0.3)

但是具体在哪里使用是个问题。

一般来说,Dropout使用位置是在隐藏层之间的节点上,具体来说,就是在全连接层之间放置Dropout来避免过拟合:

复制代码
import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_size)
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, out_features)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = torch.relu(x)
        x = self.fc2(x)
        return x

比如上面得这个例子,dropout被放置在fc1和fc2之间。

相关推荐
love530love3 分钟前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
985小水博一枚呀38 分钟前
【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)技术方案与架构设计?
人工智能·学习·语言模型·架构·大模型
白熊1881 小时前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548891 小时前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
掘金-我是哪吒1 小时前
分布式微服务系统架构第132集:Python大模型,fastapi项目-Jeskson文档-微服务分布式系统架构
分布式·python·微服务·架构·系统架构
四口鲸鱼爱吃盐1 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``2 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss2 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF2 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技2 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造