无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

这里写目录标题

官方定义

Dropout是一种常用的正则化 方法,通过随机将部分神经元的输出置为0来减少过拟合

Dropout在训练时随机讲某些张量的值设为0,从而减少模型对训练数据的依赖程序,提高泛化能力;同时在测试时需要关闭Dropout,具体来说,如果处于model.eval模式时,并不会使用Dropout。

官方的文档如下,torch.nn.Dropout:

demo

下面是一个官方文档给出的例子:

python 复制代码
import torch
import torch.nn as nn

m = nn.Dropout(p=0.2)
input = torch.randn(20, 16)
output = m(input)

print(input[0])
print(output[0])

输出的结果:

我们会发现:

  1. 有一部分的值变为了0,这些值大约占据总数的0.2。
  2. 其它非0参数都除以0.8 ,使得值变大了。比如:0.3514 / 0.8 = 0.4392-1.0317 / 0.8 = -1.2896

Dropout的位置

一般来说,我们在实现的神级网络中这么定义:

复制代码
self.dropout = nn.Dropout(0.3)

但是具体在哪里使用是个问题。

一般来说,Dropout使用位置是在隐藏层之间的节点上,具体来说,就是在全连接层之间放置Dropout来避免过拟合:

复制代码
import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_size)
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, out_features)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = torch.relu(x)
        x = self.fc2(x)
        return x

比如上面得这个例子,dropout被放置在fc1和fc2之间。

相关推荐
ai产品老杨14 分钟前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd1 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室3 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one3 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风4 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
大翻哥哥4 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
Christo34 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823404 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT5 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
zhousenshan5 小时前
Python爬虫常用框架
开发语言·爬虫·python