无脑入门pytorch系列(五)—— nn.Dropout

本系列教程适用于没有任何pytorch的同学(简单的python语法还是要的),从代码的表层出发挖掘代码的深层含义,理解具体的意思和内涵。pytorch的很多函数看着非常简单,但是其中包含了很多内容,不了解其中的意思就只能【看懂代码】,无法【理解代码】。

这里写目录标题

官方定义

Dropout是一种常用的正则化 方法,通过随机将部分神经元的输出置为0来减少过拟合

Dropout在训练时随机讲某些张量的值设为0,从而减少模型对训练数据的依赖程序,提高泛化能力;同时在测试时需要关闭Dropout,具体来说,如果处于model.eval模式时,并不会使用Dropout。

官方的文档如下,torch.nn.Dropout:

demo

下面是一个官方文档给出的例子:

python 复制代码
import torch
import torch.nn as nn

m = nn.Dropout(p=0.2)
input = torch.randn(20, 16)
output = m(input)

print(input[0])
print(output[0])

输出的结果:

我们会发现:

  1. 有一部分的值变为了0,这些值大约占据总数的0.2。
  2. 其它非0参数都除以0.8 ,使得值变大了。比如:0.3514 / 0.8 = 0.4392-1.0317 / 0.8 = -1.2896

Dropout的位置

一般来说,我们在实现的神级网络中这么定义:

复制代码
self.dropout = nn.Dropout(0.3)

但是具体在哪里使用是个问题。

一般来说,Dropout使用位置是在隐藏层之间的节点上,具体来说,就是在全连接层之间放置Dropout来避免过拟合:

复制代码
import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(in_features, hidden_size)
        self.dropout = nn.Dropout(dropout_prob)
        self.fc2 = nn.Linear(hidden_size, out_features)
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.dropout(x)
        x = torch.relu(x)
        x = self.fc2(x)
        return x

比如上面得这个例子,dropout被放置在fc1和fc2之间。

相关推荐
幻云20108 分钟前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲19 分钟前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程
梦梦代码精29 分钟前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
suyong_yq30 分钟前
RUHMI & RA8P1 教程 Part4 - 使用 RUHMI 转换 AI 模型文件
人工智能·ai·嵌入式·arm
程序员欣宸34 分钟前
LangChain4j实战之十三:函数调用,低级API版本
java·人工智能·ai·langchain4j
charlie11451419135 分钟前
从 0 开始的机器学习——NumPy 线性代数部分
开发语言·人工智能·学习·线性代数·算法·机器学习·numpy
咚咚王者40 分钟前
人工智能之核心基础 机器学习 第十二章 半监督学习
人工智能·学习·机器学习
人工智能训练1 小时前
UE5 如何显示蓝图运行流程
人工智能·ue5·ai编程·数字人·蓝图
袁气满满~_~1 小时前
Python数据分析学习
开发语言·笔记·python·学习
deephub1 小时前
构建自己的AI编程助手:基于RAG的上下文感知实现方案
人工智能·机器学习·ai编程·rag·ai编程助手