多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

目录

预测效果




基本介绍

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测。

模型描述

MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

1.无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;

2.基于减法平均优化器优化算法(SABO)、卷积神经网络(CNN)和门控循环单元网络(GRU)融合注意力机制的超前24步多变量时间序列回归预测算法;

3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。

通过SABO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。

提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。提供MAPE、RMSE、MAE等计算结果展示。

4.适用领域:

风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。

5.使用便捷:

直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测获取。
clike 复制代码
 
        gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
胖哥真不错5 天前
Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战
python·tensorflow·attention·项目实战·bilstm·双向长短时记忆循环神经网络·注意力机制回归模型
胖哥真不错6 天前
Python基于TensorFlow实现双向循环神经网络GRU加注意力机制分类模型(BiGRU-Attention分类算法)项目实战
python·tensorflow·attention·项目实战·bigru·双向循环神经网络gru·注意力机制分类模型
机器学习之心10 天前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm
简简单单做算法1 个月前
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
人工智能·深度学习·gru·cnn-gru·贝叶斯优化·数据分类识别
机器学习之心1 个月前
全新一区PID搜索算法+TCN-LSTM+注意力机制!PSA-TCN-LSTM-Attention多变量时间序列预测(Matlab)
注意力机制·多变量时间序列预测·tcn-lstm·psa-tcn-lstm
机器学习之心1 个月前
多维时序 | Matlab基于BO-LSSVM贝叶斯优化最小二乘支持向量机数据多变量时间序列预测
支持向量机·matlab·贝叶斯优化·多变量时间序列预测·最小二乘支持向量机·bo-lssvm
机器学习之心2 个月前
多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测
支持向量机·多变量时间序列预测·ssa-svr·麻雀算法优化支持向量机
CS_木成河2 个月前
【HuggingFace Transformers】OpenAIGPTModel的核心——Block源码解析
人工智能·gpt·深度学习·transformer·openai·attention·mlp
机器学习之心2 个月前
强推!创新直发核心!时序分解+优化组合+模型对比!VMD-SSA-Transformer-BiLSTM多变量时间序列预测
transformer·bilstm·多变量时间序列预测·vmd-ssa
机器学习之心2 个月前
时序预测 | 基于DLinear+PatchTST多变量时间序列预测模型(pytorch)
人工智能·pytorch·python·多变量时间序列预测·dlinear·patchtst