多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测
目录
预测效果
基本介绍
多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测。
模型描述
MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测
1.无Attention适用于MATLAB 2020版及以上版本;融合Attention要求Matlab2023版以上;
2.基于减法平均优化器优化算法(SABO)、卷积神经网络(CNN)和门控循环单元网络(GRU)融合注意力机制的超前24步多变量时间序列回归预测算法;
3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。
通过SABO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。
提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线。提供MAPE、RMSE、MAE等计算结果展示。
4.适用领域:
风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
5.使用便捷:
直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。
程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测获取。
clike
gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
dropoutLayer(0.25,'Name','drop2')
% 全连接层
fullyConnectedLayer(numResponses,'Name','fc')
regressionLayer('Name','output') ];
layers = layerGraph(layers);
layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
mydevice = 'gpu';
else
mydevice = 'cpu';
end
options = trainingOptions('adam', ...
'MaxEpochs',MaxEpochs, ...
'MiniBatchSize',MiniBatchSize, ...
'GradientThreshold',1, ...
'InitialLearnRate',learningrate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',56, ...
'LearnRateDropFactor',0.25, ...
'L2Regularization',1e-3,...
'GradientDecayFactor',0.95,...
'Verbose',false, ...
'Shuffle',"every-epoch",...
'ExecutionEnvironment',mydevice,...
'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
参考资料
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501