深度学习入门(三):卷积神经网络(CNN)

引入

给定一张图片,计算机需要模型判断图里的东西是什么?

(car、truck、airplane、ship、horse)

一、卷积神经网络整体架构

  • CONV:卷积计算层,线性乘积求和
  • RELU:激励层,激活函数
  • POOL:池化层,取区域平均或最大(MAX POOL)
  • PC:全连接层

二、CONV卷积层计算

对CNN来说,它是一块一块进行对比的,"小块"称之为Features特征。卷积就是对图像(不同窗口数据)和滤波矩阵做内积 。每计算完一个数据窗口内的数据后,数据窗口不断平滑移动,直到计算完所有数据。

图中矩阵解析:

  • Input Volume(7x7x3):图像的长宽均为7,3代表RGB三个颜色通道
  • Filter W0、W1:滤波器,带一组固定权重的神经元
  • Output Volume:两个不同的输出

随着左边数据窗口的平移滑动,滤波器 F i l t e r W 0 / W 1 Filter W0/W1 FilterW0/W1对不同的局部数据进行卷积计算。左边数据在变化,每次滤波器都是针对某一局部的数据窗口进行卷积 ,这就是所谓的CNN中的局部感知机制 。与此同时,数据窗口滑动,导致输入在变化,但中间滤波器Filter w0的权重是固定不变 的,这个权重不变即所谓的CNN中的参数(权重)共享机制

三、卷积层参数

  • depth:神经元个数,滤波器个数
  • stride:步长,滑动多少步到边缘
  • zero-padding:边缘填充,为了总长能为步长整除,并且一定程度上减轻边界利用少的情况

四、ReLU激励层

五、POOL池化层

进行筛选压缩的过程,取区域平均或最大

最大池化 MAX POOLING

下图包含两次卷积一次池化,共7层神经网络

六、特征图变化

三维要拉长成特征向量,再输入全接连层

相关推荐
爱分享的飘哥2 分钟前
第七十章:告别“手写循环”噩梦!Trainer结构搭建:PyTorch Lightning让你“一键炼丹”!
人工智能·pytorch·分布式训练·lightning·accelerate·训练框架·trainer
阿里云大数据AI技术17 分钟前
PAIFuser:面向图像视频的训练推理加速框架
人工智能·机器学习
盛世隐者19 分钟前
【深度学习】pytorch深度学习框架的环境配置
人工智能·pytorch·深度学习
说私域21 分钟前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的流量转化策略研究
人工智能·小程序
funfan05171 小时前
GPT-5博士级AI使用教程及国内平替方案
人工智能·gpt
萤丰信息1 小时前
技术赋能安全:智慧工地构建城市建设新防线
java·大数据·开发语言·人工智能·智慧城市·智慧工地
AI视觉网奇1 小时前
音频分类模型笔记
人工智能·python·深度学习
Dante但丁1 小时前
手扒Github项目文档级知识图谱构建框架RAKG(保姆级)Day4
人工智能
用户5191495848452 小时前
使用JavaScript与CSS创建"移动高亮"导航栏
人工智能·aigc
Java中文社群2 小时前
淘宝首位程序员离职,竟投身AI新公司做这事!
人工智能·后端·程序员