深度学习入门(三):卷积神经网络(CNN)

引入

给定一张图片,计算机需要模型判断图里的东西是什么?

(car、truck、airplane、ship、horse)

一、卷积神经网络整体架构

  • CONV:卷积计算层,线性乘积求和
  • RELU:激励层,激活函数
  • POOL:池化层,取区域平均或最大(MAX POOL)
  • PC:全连接层

二、CONV卷积层计算

对CNN来说,它是一块一块进行对比的,"小块"称之为Features特征。卷积就是对图像(不同窗口数据)和滤波矩阵做内积 。每计算完一个数据窗口内的数据后,数据窗口不断平滑移动,直到计算完所有数据。

图中矩阵解析:

  • Input Volume(7x7x3):图像的长宽均为7,3代表RGB三个颜色通道
  • Filter W0、W1:滤波器,带一组固定权重的神经元
  • Output Volume:两个不同的输出

随着左边数据窗口的平移滑动,滤波器 F i l t e r W 0 / W 1 Filter W0/W1 FilterW0/W1对不同的局部数据进行卷积计算。左边数据在变化,每次滤波器都是针对某一局部的数据窗口进行卷积 ,这就是所谓的CNN中的局部感知机制 。与此同时,数据窗口滑动,导致输入在变化,但中间滤波器Filter w0的权重是固定不变 的,这个权重不变即所谓的CNN中的参数(权重)共享机制

三、卷积层参数

  • depth:神经元个数,滤波器个数
  • stride:步长,滑动多少步到边缘
  • zero-padding:边缘填充,为了总长能为步长整除,并且一定程度上减轻边界利用少的情况

四、ReLU激励层

五、POOL池化层

进行筛选压缩的过程,取区域平均或最大

最大池化 MAX POOLING

下图包含两次卷积一次池化,共7层神经网络

六、特征图变化

三维要拉长成特征向量,再输入全接连层

相关推荐
Ronin-Lotus3 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps4 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯4 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI4 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1115 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师5 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot5 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3935 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
闻道且行之5 小时前
Windows|CUDA和cuDNN下载和安装,默认安装在C盘和不安装在C盘的两种方法
windows·深度学习·cuda·cudnn
jonyleek6 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全