[数据集][目标检测]垃圾目标检测数据集VOC格式14963张44类别

数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml)

图片数量(jpg文件个数):14963

标注数量(xml文件个数):14963

标注类别数:44

标注类别名称:["toiletries","plastic utensils","seasoning bottles","leftovers","chopsticks","ceramic utensils","pots","metal utensils","cutting boards","old clothes","expired drugs","fish bones","metal food cans","peels and pulp","cartons and cartons","plug wires","plastic clothes hangers","vegetable leaves","glassware","tea dregs","shoes","disposable fast food boxes","eggshells","plush toys","metal kitchenware","power bank","dry batteries","pull cans","plastic toys","garbage cans","Wine bottle","defaced paper","ointment","big bone","express paper bag","defaced plastic","edible oil barrel","cigarette butts","beverage bottle","bag","flower pot","pillow","book paper","toothpick"]

对应中文名称:

"洗护用品", "塑料器皿", "调料瓶", "剩饭剩菜", "筷子", "陶瓷器皿", "锅", "金属器皿", "砧板", "旧衣服", "过期药物", "鱼骨", "金属食品罐", "果皮果肉", "纸盒纸箱", "插头电线", "塑料衣架", "菜帮菜叶", "玻璃器皿", "茶叶渣", "鞋", "一次性快餐盒", "蛋壳", "毛绒玩具", "金属厨具", "充电宝", "干电池", "易拉罐", "塑料玩具", "垃圾桶","酒瓶", "污损用纸", "软膏", "大骨头", "快递纸袋", "污损塑料", "食用油桶", "烟蒂", "饮料瓶", "包", "花盆", "枕头", "书籍纸张", "牙签"

每个类别标注的框数:

toiletries count = 1030

plastic utensils count = 666

seasoning bottles count = 543

leftovers count = 1414

chopsticks count = 817

ceramic utensils count = 2662

pots count = 530

metal utensils count = 341

cutting boards count = 466

old clothes count = 394

expired drugs count = 710

fish bones count = 525

metal food cans count = 400

peels and pulp count = 1052

cartons and cartons count = 623

plug wires count = 1277

plastic clothes hangers count = 325

vegetable leaves count = 984

glassware count = 878

tea dregs count = 409

shoes count = 463

disposable fast food boxes count = 329

eggshells count = 458

plush toys count = 655

metal kitchenware count = 284

power bank count = 410

dry batteries count = 445

pull cans count = 414

plastic toys count = 439

garbage cans count = 108

Wine bottle count = 346

defaced paper count = 227

ointment count = 418

big bone count = 413

express paper bag count = 248

defaced plastic count = 1237

edible oil barrel count = 446

cigarette butts count = 433

beverage bottle count = 371

bag count = 442

flower pot count = 211

pillow count = 382

book paper count = 206

toothpick count = 156

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:类别全是英文不用担心标签中文问题,且数据集经过标注校验保证无错误标注

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

下载地址:

https://download.csdn.net/download/FL1623863129/85682652

相关推荐
鹏多多11 分钟前
纯前端人脸识别利器:face-api.js手把手深入解析教学
前端·javascript·人工智能
aneasystone本尊23 分钟前
盘点 Chat2Graph 中的专家和工具
人工智能
Baihai_IDP1 小时前
AI Agents 能自己开发工具自己使用吗?一项智能体自迭代能力研究
人工智能·面试·llm
大模型真好玩2 小时前
大模型工程面试经典(七)—如何评估大模型微调效果?
人工智能·面试·deepseek
黎燃10 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊11 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠12 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶15 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云15 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术15 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能