[数据集][目标检测]垃圾目标检测数据集VOC格式14963张44类别

数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml)

图片数量(jpg文件个数):14963

标注数量(xml文件个数):14963

标注类别数:44

标注类别名称:["toiletries","plastic utensils","seasoning bottles","leftovers","chopsticks","ceramic utensils","pots","metal utensils","cutting boards","old clothes","expired drugs","fish bones","metal food cans","peels and pulp","cartons and cartons","plug wires","plastic clothes hangers","vegetable leaves","glassware","tea dregs","shoes","disposable fast food boxes","eggshells","plush toys","metal kitchenware","power bank","dry batteries","pull cans","plastic toys","garbage cans","Wine bottle","defaced paper","ointment","big bone","express paper bag","defaced plastic","edible oil barrel","cigarette butts","beverage bottle","bag","flower pot","pillow","book paper","toothpick"]

对应中文名称:

["洗护用品", "塑料器皿", "调料瓶", "剩饭剩菜", "筷子", "陶瓷器皿", "锅", "金属器皿", "砧板", "旧衣服", "过期药物", "鱼骨", "金属食品罐", "果皮果肉", "纸盒纸箱",

"插头电线", "塑料衣架", "菜帮菜叶", "玻璃器皿", "茶叶渣", "鞋", "一次性快餐盒", "蛋壳", "毛绒玩具", "金属厨具", "充电宝", "干电池", "易拉罐", "塑料玩具", "垃圾桶","酒瓶", "污损用纸", "软膏", "大骨头", "快递纸袋", "污损塑料", "食用油桶", "烟蒂", "饮料瓶", "包", "花盆", "枕头", "书籍纸张", "牙签"]

每个类别标注的框数:

toiletries count = 1030

plastic utensils count = 666

seasoning bottles count = 543

leftovers count = 1414

chopsticks count = 817

ceramic utensils count = 2662

pots count = 530

metal utensils count = 341

cutting boards count = 466

old clothes count = 394

expired drugs count = 710

fish bones count = 525

metal food cans count = 400

peels and pulp count = 1052

cartons and cartons count = 623

plug wires count = 1277

plastic clothes hangers count = 325

vegetable leaves count = 984

glassware count = 878

tea dregs count = 409

shoes count = 463

disposable fast food boxes count = 329

eggshells count = 458

plush toys count = 655

metal kitchenware count = 284

power bank count = 410

dry batteries count = 445

pull cans count = 414

plastic toys count = 439

garbage cans count = 108

Wine bottle count = 346

defaced paper count = 227

ointment count = 418

big bone count = 413

express paper bag count = 248

defaced plastic count = 1237

edible oil barrel count = 446

cigarette butts count = 433

beverage bottle count = 371

bag count = 442

flower pot count = 211

pillow count = 382

book paper count = 206

toothpick count = 156

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:类别全是英文不用担心标签中文问题,且数据集经过标注校验保证无错误标注

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

下载地址:

https://download.csdn.net/download/FL1623863129/85682652

相关推荐
艾思科蓝 AiScholar2 分钟前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang0515 分钟前
机器学习 - 衡量模型的特性
人工智能·机器学习
thinkMoreAndDoMore25 分钟前
深度学习(3)-TensorFlow入门(梯度带)
人工智能·深度学习·tensorflow
Dream251231 分钟前
【Transformer架构】
人工智能·深度学习·transformer
黎智程31 分钟前
AI助力小微企业技术开发规范化管理 | 杂谈
人工智能
web150854159351 小时前
超级详细Spring AI运用Ollama大模型
人工智能·windows·spring
啊哈哈哈哈哈啊哈哈1 小时前
J4打卡—— ResNet 和 DenseNet结合实现鸟类分类
人工智能·pytorch·分类
alden_ygq1 小时前
Ollama API 交互
人工智能·交互
小刘私坊1 小时前
机器梦境:AI如何在创意的狂野边疆上重塑艺术
人工智能
香橙薄荷心1 小时前
人工智能之自动驾驶技术体系
人工智能·机器学习·自动驾驶