[数据集][目标检测]垃圾目标检测数据集VOC格式14963张44类别

数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml)

图片数量(jpg文件个数):14963

标注数量(xml文件个数):14963

标注类别数:44

标注类别名称:["toiletries","plastic utensils","seasoning bottles","leftovers","chopsticks","ceramic utensils","pots","metal utensils","cutting boards","old clothes","expired drugs","fish bones","metal food cans","peels and pulp","cartons and cartons","plug wires","plastic clothes hangers","vegetable leaves","glassware","tea dregs","shoes","disposable fast food boxes","eggshells","plush toys","metal kitchenware","power bank","dry batteries","pull cans","plastic toys","garbage cans","Wine bottle","defaced paper","ointment","big bone","express paper bag","defaced plastic","edible oil barrel","cigarette butts","beverage bottle","bag","flower pot","pillow","book paper","toothpick"]

对应中文名称:

"洗护用品", "塑料器皿", "调料瓶", "剩饭剩菜", "筷子", "陶瓷器皿", "锅", "金属器皿", "砧板", "旧衣服", "过期药物", "鱼骨", "金属食品罐", "果皮果肉", "纸盒纸箱", "插头电线", "塑料衣架", "菜帮菜叶", "玻璃器皿", "茶叶渣", "鞋", "一次性快餐盒", "蛋壳", "毛绒玩具", "金属厨具", "充电宝", "干电池", "易拉罐", "塑料玩具", "垃圾桶","酒瓶", "污损用纸", "软膏", "大骨头", "快递纸袋", "污损塑料", "食用油桶", "烟蒂", "饮料瓶", "包", "花盆", "枕头", "书籍纸张", "牙签"

每个类别标注的框数:

toiletries count = 1030

plastic utensils count = 666

seasoning bottles count = 543

leftovers count = 1414

chopsticks count = 817

ceramic utensils count = 2662

pots count = 530

metal utensils count = 341

cutting boards count = 466

old clothes count = 394

expired drugs count = 710

fish bones count = 525

metal food cans count = 400

peels and pulp count = 1052

cartons and cartons count = 623

plug wires count = 1277

plastic clothes hangers count = 325

vegetable leaves count = 984

glassware count = 878

tea dregs count = 409

shoes count = 463

disposable fast food boxes count = 329

eggshells count = 458

plush toys count = 655

metal kitchenware count = 284

power bank count = 410

dry batteries count = 445

pull cans count = 414

plastic toys count = 439

garbage cans count = 108

Wine bottle count = 346

defaced paper count = 227

ointment count = 418

big bone count = 413

express paper bag count = 248

defaced plastic count = 1237

edible oil barrel count = 446

cigarette butts count = 433

beverage bottle count = 371

bag count = 442

flower pot count = 211

pillow count = 382

book paper count = 206

toothpick count = 156

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:类别全是英文不用担心标签中文问题,且数据集经过标注校验保证无错误标注

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

下载地址:

https://download.csdn.net/download/FL1623863129/85682652

相关推荐
柠石榴1 分钟前
《机器学习》(周志华)第二章 模型评估与选择
人工智能·机器学习
新智元11 分钟前
数学圈地震!o3 靠直觉刷爆人类顶尖难题,14 位专家集体破防
人工智能·openai
AI大模型学习教程17 分钟前
Transformer:BERT模型和代码解析
人工智能·llm
LLM大模型19 分钟前
LangChain篇- 一文读懂 LCEL工作流编排
人工智能·程序员·llm
试剂界的爱马仕1 小时前
TCA 循环中间体如何改写肝损伤命运【AbMole】
大数据·人工智能·科技·机器学习·ai写作
研一计算机小白一枚1 小时前
VRFF: Video Registration and FusionFramework 论文详解
人工智能·深度学习·计算机视觉
Leo.yuan1 小时前
数据湖是什么?数据湖和数据仓库的区别是什么?
大数据·运维·数据仓库·人工智能·信息可视化
仙人掌_lz2 小时前
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
人工智能·搜索引擎·ai·金融·llm·rag·mcp
MILI元宇宙2 小时前
纳米AI搜索与百度AI搜、豆包的核心差异解析
人工智能·百度
SpikeKing2 小时前
LLM - LlamaFactory 的大模型推理 踩坑记录
人工智能·llm·llamafactory