[数据集][目标检测]垃圾目标检测数据集VOC格式14963张44类别

数据集格式:Pascal VOC格式(不包含分割的txt文件,仅仅包含jpg图片和对应的xml)

图片数量(jpg文件个数):14963

标注数量(xml文件个数):14963

标注类别数:44

标注类别名称:["toiletries","plastic utensils","seasoning bottles","leftovers","chopsticks","ceramic utensils","pots","metal utensils","cutting boards","old clothes","expired drugs","fish bones","metal food cans","peels and pulp","cartons and cartons","plug wires","plastic clothes hangers","vegetable leaves","glassware","tea dregs","shoes","disposable fast food boxes","eggshells","plush toys","metal kitchenware","power bank","dry batteries","pull cans","plastic toys","garbage cans","Wine bottle","defaced paper","ointment","big bone","express paper bag","defaced plastic","edible oil barrel","cigarette butts","beverage bottle","bag","flower pot","pillow","book paper","toothpick"]

对应中文名称:

"洗护用品", "塑料器皿", "调料瓶", "剩饭剩菜", "筷子", "陶瓷器皿", "锅", "金属器皿", "砧板", "旧衣服", "过期药物", "鱼骨", "金属食品罐", "果皮果肉", "纸盒纸箱", "插头电线", "塑料衣架", "菜帮菜叶", "玻璃器皿", "茶叶渣", "鞋", "一次性快餐盒", "蛋壳", "毛绒玩具", "金属厨具", "充电宝", "干电池", "易拉罐", "塑料玩具", "垃圾桶","酒瓶", "污损用纸", "软膏", "大骨头", "快递纸袋", "污损塑料", "食用油桶", "烟蒂", "饮料瓶", "包", "花盆", "枕头", "书籍纸张", "牙签"

每个类别标注的框数:

toiletries count = 1030

plastic utensils count = 666

seasoning bottles count = 543

leftovers count = 1414

chopsticks count = 817

ceramic utensils count = 2662

pots count = 530

metal utensils count = 341

cutting boards count = 466

old clothes count = 394

expired drugs count = 710

fish bones count = 525

metal food cans count = 400

peels and pulp count = 1052

cartons and cartons count = 623

plug wires count = 1277

plastic clothes hangers count = 325

vegetable leaves count = 984

glassware count = 878

tea dregs count = 409

shoes count = 463

disposable fast food boxes count = 329

eggshells count = 458

plush toys count = 655

metal kitchenware count = 284

power bank count = 410

dry batteries count = 445

pull cans count = 414

plastic toys count = 439

garbage cans count = 108

Wine bottle count = 346

defaced paper count = 227

ointment count = 418

big bone count = 413

express paper bag count = 248

defaced plastic count = 1237

edible oil barrel count = 446

cigarette butts count = 433

beverage bottle count = 371

bag count = 442

flower pot count = 211

pillow count = 382

book paper count = 206

toothpick count = 156

使用标注工具:labelImg

标注规则:对类别进行画矩形框

重要说明:类别全是英文不用担心标签中文问题,且数据集经过标注校验保证无错误标注

特别声明:本数据集不对训练的模型或者权重文件精度作任何保证,数据集只提供准确且合理标注

下载地址:

https://download.csdn.net/download/FL1623863129/85682652

相关推荐
終不似少年遊*10 分钟前
【从基础到模型网络】深度学习-语义分割-基础
网络·人工智能·深度学习·语义分割·卷积·上采样
zeroporn35 分钟前
分别用 语言模型雏形N-Gram 和 文本表示BoW词袋 来实现文本情绪分类
人工智能·语言模型·分类·大模型·n-gram·词袋
云卓SKYDROID1 小时前
无人机减震模块运行与技术要点分析!
人工智能·无人机·科普·高科技·减震系统
山北雨夜漫步1 小时前
机器学习 Day18 Support Vector Machine ——最优美的机器学习算法
人工智能·算法·机器学习
正在走向自律1 小时前
从0到1吃透卷积神经网络(CNN):原理与实战全解析
人工智能·神经网络·cnn
拓端研究室TRL1 小时前
Python+AI提示词糖尿病预测融合模型:伯努利朴素贝叶斯、逻辑回归、决策树、随机森林、支持向量机SVM应用
人工智能·python·决策树·随机森林·逻辑回归
何双新1 小时前
第8讲、Multi-Head Attention 的核心机制与实现细节
人工智能·transformer
moongoblin1 小时前
协作赋能-1-制造业生产流程重构
大数据·人工智能·经验分享·制造
穿越光年1 小时前
MCP实战:在扣子空间用扣子工作流MCP,一句话生成儿童故事rap视频
人工智能·音视频
Johny_Zhao2 小时前
AI+自动化测试系统方案:网络设备与网络应用智能测试
linux·网络·人工智能·python·网络安全·docker·ai·信息安全·云计算·ansible·shell·cisco·huawei·系统运维·itsm·华三·deepseek