H36M VS 3DPW datasets

1采集设备方面

H36M使用了高精度的多视角摄像机动态捕捉系统获得了非常准确和连贯的3D关节坐标标注。

3DPW使用了单目摄像机与IMU的复合传感系统进行采集,存在一定程度的标注噪声。

2场景环境方面

H36M主要针对室内定向动作,背景单一简洁。

3DPW重点是室外复杂环境中人的自然动作,场景复杂多变。

3提供的标注

H36M给出了3D关节坐标和对应的图片数据。

3DPW提供了3D骨骼和2D关键点,但没有对应的图片数据。

4标注形式

H36M以3D坐标的形式直接提供了关节位置。

3DPW给出的是经过注册的3D人体网格,需要自己提取骨骼。

Human3.6M数据集原始并没有提供SMPL参数,

这里的关键点是:

  1. SMPL GT参数是通过MoSh获得的。
  2. MoSh是将SMPL模型 fitting 到物理标记上的。
  3. 而不是数据集原始就提供SMPL参数。

所以这个过程是:

  1. Human3.6M提供物理动作捕捉的标记数据。
  2. 使用者通过MoSh,将SMPL模型拟合到标记,生成SMPL参数。
  3. 作为额外的监督信息,提供了SMPL参数。
相关推荐
Mr数据杨2 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339862 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
phoenix@Capricornus3 小时前
反向传播算法——矩阵形式递推公式——ReLU传递函数
算法·机器学习·矩阵
zhz52144 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师4 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
田梓燊4 小时前
数学复习笔记 19
笔记·线性代数·机器学习
武科大许志伟4 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技4 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco4 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
小oo呆4 小时前
【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型
人工智能·自然语言处理