H36M VS 3DPW datasets

1采集设备方面

H36M使用了高精度的多视角摄像机动态捕捉系统获得了非常准确和连贯的3D关节坐标标注。

3DPW使用了单目摄像机与IMU的复合传感系统进行采集,存在一定程度的标注噪声。

2场景环境方面

H36M主要针对室内定向动作,背景单一简洁。

3DPW重点是室外复杂环境中人的自然动作,场景复杂多变。

3提供的标注

H36M给出了3D关节坐标和对应的图片数据。

3DPW提供了3D骨骼和2D关键点,但没有对应的图片数据。

4标注形式

H36M以3D坐标的形式直接提供了关节位置。

3DPW给出的是经过注册的3D人体网格,需要自己提取骨骼。

Human3.6M数据集原始并没有提供SMPL参数,

这里的关键点是:

  1. SMPL GT参数是通过MoSh获得的。
  2. MoSh是将SMPL模型 fitting 到物理标记上的。
  3. 而不是数据集原始就提供SMPL参数。

所以这个过程是:

  1. Human3.6M提供物理动作捕捉的标记数据。
  2. 使用者通过MoSh,将SMPL模型拟合到标记,生成SMPL参数。
  3. 作为额外的监督信息,提供了SMPL参数。
相关推荐
Blossom.1182 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn4 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿5 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子5 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study5 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉