H36M VS 3DPW datasets

1采集设备方面

H36M使用了高精度的多视角摄像机动态捕捉系统获得了非常准确和连贯的3D关节坐标标注。

3DPW使用了单目摄像机与IMU的复合传感系统进行采集,存在一定程度的标注噪声。

2场景环境方面

H36M主要针对室内定向动作,背景单一简洁。

3DPW重点是室外复杂环境中人的自然动作,场景复杂多变。

3提供的标注

H36M给出了3D关节坐标和对应的图片数据。

3DPW提供了3D骨骼和2D关键点,但没有对应的图片数据。

4标注形式

H36M以3D坐标的形式直接提供了关节位置。

3DPW给出的是经过注册的3D人体网格,需要自己提取骨骼。

Human3.6M数据集原始并没有提供SMPL参数,

这里的关键点是:

  1. SMPL GT参数是通过MoSh获得的。
  2. MoSh是将SMPL模型 fitting 到物理标记上的。
  3. 而不是数据集原始就提供SMPL参数。

所以这个过程是:

  1. Human3.6M提供物理动作捕捉的标记数据。
  2. 使用者通过MoSh,将SMPL模型拟合到标记,生成SMPL参数。
  3. 作为额外的监督信息,提供了SMPL参数。
相关推荐
Drgfd13 小时前
真智能 vs 伪智能:天选 WE H7 Lite 用 AI 人脸识别 + 呼吸灯带,重新定义智能化充电桩
人工智能·智能充电桩·家用充电桩·充电桩推荐
萤丰信息13 小时前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
盖雅工场13 小时前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据14 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_9413331014 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹14 小时前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣14 小时前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple15 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli715 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所15 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全