opencv 水果识别+UI界面识别系统,可训练自定义的水果数据集

目录

一、实现和完整UI视频效果展示

主界面:

测试图片结果界面:

自定义图片结果界面:

二、原理介绍:

图像预处理

HOG特征提取算法

数据准备

SVM支持向量机算法

预测和评估

完整演示视频:

完整代码链接


一、实现和完整UI视频效果展示

主界面:

测试图片结果界面:

自定义图片结果界面:

二、原理介绍:

图像预处理

对输入图像进行预处理操作,例如调整大小、灰度化、归一化等,以便在后续步骤中更好地处理图像。

HOG特征提取算法

HOG(Histogram of Oriented Gradients,梯度方向直方图)算法是一种用于图像特征提取的技术,常用于目标检测和人脸识别等计算机视觉应用中。它的基本思想是通过计算每个小区域内像素的梯度方向和强度,将这些信息映射到对应的方向直方图中,最终将所有小区域的直方图拼接起来得到整幅图像的特征描述符。

数据准备

选择适当的数据集,并进行预处理,例如特征提取、缩放、标准化等。

https://hyper.ai/网站下载Fruits 360 水果蔬菜数据集

SVM支持向量机算法

​​​​​​ SVM(Support Vector Machine,支持向量机)算法是一种常见的机器学习算法,用于分类和回归等应用场景中。其基本思想是通过在特征空间上寻找一个最优超平面来实现分类或回归任务。 SVM 算法可以处理线性可分和非线性可分的数据,其中对于线性可分的情况,我们可以使用硬间隔最大化的方式来得到最优超平面;对于非线性可分的情况,则可以使用核函数将数据映射到高维特征空间中,然后在这个空间中寻找最优超平面。

预测和评估

使用训练好的 SVM 模型,在测试集上进行预测,并计算模型的准确率、精确率、召回率、F1 值等指标,以评估模型性能。

完整演示视频:

无法粘贴视频........

完整代码链接

视频和代码都已上传百度网盘,放在主页置顶文章

相关推荐
曼城的天空是蓝色的20 分钟前
GroupNet:基于多尺度神经网络的交互推理轨迹预测
深度学习·计算机视觉
zl_vslam22 分钟前
SLAM中的非线性优-3D图优化之轴角在Opencv-PNP中的应用(一)
前端·人工智能·算法·计算机视觉·slam se2 非线性优化
koo36442 分钟前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
lzjava20241 小时前
Spring AI使用知识库增强对话功能
人工智能·python·spring
B站_计算机毕业设计之家1 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Francek Chen1 小时前
【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
人工智能·pytorch·深度学习·自然语言处理·glove
这张生成的图像能检测吗1 小时前
(论文速读)LyT-Net:基于YUV变压器的轻量级微光图像增强网络
图像处理·人工智能·计算机视觉·低照度
许泽宇的技术分享2 小时前
AI黑客来袭:Strix如何用大模型重新定义渗透测试游戏规则
人工智能
Oxo Security2 小时前
【AI安全】检索增强生成(RAG)
人工智能·安全·网络安全·ai
少林码僧2 小时前
2.3 Transformer 变体与扩展:BERT、GPT 与多模态模型
人工智能·gpt·ai·大模型·bert·transformer·1024程序员节