大数据-玩转数据-Flink营销对账

一、说明

在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。

二、思路

对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不同的日志信息,所以我们要同时读入两条流的数据来做合并处理。

三、数据准备

订单数据从OrderLog.csv中读取,交易数据从ReceiptLog.csv中读取

JavaBean类的准备

四、代码

java 复制代码
package com.lyh.flink06;

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction;
import org.apache.flink.util.Collector;

import java.util.HashMap;
import java.util.Map;

public class Project_Order {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);
        SingleOutputStreamOperator<OrderEvent> orderEventString = env.readTextFile("input/OrderLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new OrderEvent(
                            Long.valueOf(data[0]),
                            data[1],
                            data[2],
                            Long.valueOf(data[3])
                    );
                }).filter(log -> "pay".equals(log.getEventType()));

        SingleOutputStreamOperator<TxEvent> txEventString = env.readTextFile("input/ReceiptLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new TxEvent(
                            data[0],
                            data[1],
                            Long.valueOf(data[2])
                    );
                });

        orderEventString.connect(txEventString)
                .keyBy(OrderEvent::getTxId,TxEvent::getTxId)
                .process(new KeyedCoProcessFunction<String, OrderEvent, TxEvent, String>() {
                    Map<String,OrderEvent> OrderEventmap = new HashMap<>();
                    Map<String,TxEvent> TxEventmap = new HashMap<>();
                    @Override
                    public void processElement1(OrderEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        TxEvent txEvent = TxEventmap.get(ctx.getCurrentKey());
                        if (txEvent != null) {
                            out.collect("订单" + value.getOrderId() + "对账成功");
                        }else {
                            OrderEventmap.put(ctx.getCurrentKey(),value);
                        }

                    }

                    @Override
                    public void processElement2(TxEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        OrderEvent orderEvent = OrderEventmap.get(ctx.getCurrentKey());
                        if (orderEvent != null) {
                           out.collect("订单" + orderEvent.getOrderId() + "对账成功");
                        }else {
                            TxEventmap.put(ctx.getCurrentKey(),value);
                        }
                    }
                }).print();
        env.execute();

    }
}

五、结果

相关推荐
2501_930104041 小时前
GitCode 疑难问题诊疗:全方位指南
大数据·elasticsearch·gitcode
健康平安的活着1 小时前
es7.17.x es服务yellow状态的排查&查看节点,分片状态数量
大数据·elasticsearch·搜索引擎
念念01071 小时前
基于MATLAB多智能体强化学习的出租车资源配置优化系统设计与实现
大数据·人工智能·matlab
sunxinyu4 小时前
曲面/线 拟合gnuplot
大数据·线性回归·数据处理·数据拟合·二维三维空间数据
专注API从业者4 小时前
基于 Flink 的淘宝实时数据管道设计:商品详情流式处理与异构存储
大数据·前端·数据库·数据挖掘·flink
淡酒交魂6 小时前
「Flink」业务搭建方法总结
大数据·数据挖掘·数据分析
mask哥6 小时前
详解flink java基础(一)
java·大数据·微服务·flink·实时计算·领域驱动
TDengine (老段)6 小时前
TDengine IDMP 高级功能(4. 元素引用)
大数据·数据库·人工智能·物联网·数据分析·时序数据库·tdengine
livemetee7 小时前
Flink2.0学习笔记:Flink服务器搭建与flink作业提交
大数据·笔记·学习·flink
zhang98800008 小时前
储能领域大数据平台的设计中如何使用 Hadoop、Spark、Flink 等组件实现数据采集、清洗、存储及实时 / 离线计算,支持储能系统分析与预测
大数据·hadoop·spark