大数据-玩转数据-Flink营销对账

一、说明

在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。

二、思路

对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不同的日志信息,所以我们要同时读入两条流的数据来做合并处理。

三、数据准备

订单数据从OrderLog.csv中读取,交易数据从ReceiptLog.csv中读取

JavaBean类的准备

四、代码

java 复制代码
package com.lyh.flink06;

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction;
import org.apache.flink.util.Collector;

import java.util.HashMap;
import java.util.Map;

public class Project_Order {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);
        SingleOutputStreamOperator<OrderEvent> orderEventString = env.readTextFile("input/OrderLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new OrderEvent(
                            Long.valueOf(data[0]),
                            data[1],
                            data[2],
                            Long.valueOf(data[3])
                    );
                }).filter(log -> "pay".equals(log.getEventType()));

        SingleOutputStreamOperator<TxEvent> txEventString = env.readTextFile("input/ReceiptLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new TxEvent(
                            data[0],
                            data[1],
                            Long.valueOf(data[2])
                    );
                });

        orderEventString.connect(txEventString)
                .keyBy(OrderEvent::getTxId,TxEvent::getTxId)
                .process(new KeyedCoProcessFunction<String, OrderEvent, TxEvent, String>() {
                    Map<String,OrderEvent> OrderEventmap = new HashMap<>();
                    Map<String,TxEvent> TxEventmap = new HashMap<>();
                    @Override
                    public void processElement1(OrderEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        TxEvent txEvent = TxEventmap.get(ctx.getCurrentKey());
                        if (txEvent != null) {
                            out.collect("订单" + value.getOrderId() + "对账成功");
                        }else {
                            OrderEventmap.put(ctx.getCurrentKey(),value);
                        }

                    }

                    @Override
                    public void processElement2(TxEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        OrderEvent orderEvent = OrderEventmap.get(ctx.getCurrentKey());
                        if (orderEvent != null) {
                           out.collect("订单" + orderEvent.getOrderId() + "对账成功");
                        }else {
                            TxEventmap.put(ctx.getCurrentKey(),value);
                        }
                    }
                }).print();
        env.execute();

    }
}

五、结果

相关推荐
samLi06202 分钟前
【更新】中国省级产业集聚测算数据及协调集聚指数数据(2000-2022年)
大数据
Mephisto.java6 分钟前
【大数据学习 | Spark-Core】Spark提交及运行流程
大数据·学习·spark
EasyCVR1 小时前
私有化部署视频平台EasyCVR宇视设备视频平台如何构建视频联网平台及升级视频转码业务?
大数据·网络·音视频·h.265
hummhumm1 小时前
第 22 章 - Go语言 测试与基准测试
java·大数据·开发语言·前端·python·golang·log4j
科技象限2 小时前
电脑禁用U盘的四种简单方法(电脑怎么阻止u盘使用)
大数据·网络·电脑
天冬忘忧3 小时前
Kafka 生产者全面解析:从基础原理到高级实践
大数据·分布式·kafka
青云交3 小时前
大数据新视界 -- Hive 数据仓库:构建高效数据存储的基石(下)(2/ 30)
大数据·数据仓库·hive·数据安全·数据分区·数据桶·大数据存储
zmd-zk3 小时前
flink学习(2)——wordcount案例
大数据·开发语言·学习·flink
电子手信3 小时前
知识中台在多语言客户中的应用
大数据·人工智能·自然语言处理·数据挖掘·知识图谱
隔着天花板看星星4 小时前
Kafka-Consumer理论知识
大数据·分布式·中间件·kafka