大数据-玩转数据-Flink营销对账

一、说明

在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。

二、思路

对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不同的日志信息,所以我们要同时读入两条流的数据来做合并处理。

三、数据准备

订单数据从OrderLog.csv中读取,交易数据从ReceiptLog.csv中读取

JavaBean类的准备

四、代码

java 复制代码
package com.lyh.flink06;

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction;
import org.apache.flink.util.Collector;

import java.util.HashMap;
import java.util.Map;

public class Project_Order {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);
        SingleOutputStreamOperator<OrderEvent> orderEventString = env.readTextFile("input/OrderLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new OrderEvent(
                            Long.valueOf(data[0]),
                            data[1],
                            data[2],
                            Long.valueOf(data[3])
                    );
                }).filter(log -> "pay".equals(log.getEventType()));

        SingleOutputStreamOperator<TxEvent> txEventString = env.readTextFile("input/ReceiptLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new TxEvent(
                            data[0],
                            data[1],
                            Long.valueOf(data[2])
                    );
                });

        orderEventString.connect(txEventString)
                .keyBy(OrderEvent::getTxId,TxEvent::getTxId)
                .process(new KeyedCoProcessFunction<String, OrderEvent, TxEvent, String>() {
                    Map<String,OrderEvent> OrderEventmap = new HashMap<>();
                    Map<String,TxEvent> TxEventmap = new HashMap<>();
                    @Override
                    public void processElement1(OrderEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        TxEvent txEvent = TxEventmap.get(ctx.getCurrentKey());
                        if (txEvent != null) {
                            out.collect("订单" + value.getOrderId() + "对账成功");
                        }else {
                            OrderEventmap.put(ctx.getCurrentKey(),value);
                        }

                    }

                    @Override
                    public void processElement2(TxEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        OrderEvent orderEvent = OrderEventmap.get(ctx.getCurrentKey());
                        if (orderEvent != null) {
                           out.collect("订单" + orderEvent.getOrderId() + "对账成功");
                        }else {
                            TxEventmap.put(ctx.getCurrentKey(),value);
                        }
                    }
                }).print();
        env.execute();

    }
}

五、结果

相关推荐
愚者大大11 分钟前
小白入门:GitHub 远程仓库使用全攻略
大数据·elasticsearch·搜索引擎
MZWeiei42 分钟前
Spark Streaming 内部运行机制详解
大数据·分布式·spark
ykjhr_3d1 小时前
数字孪生技术于航天航空领域的应用探索
大数据
南鸳6102 小时前
Spark--RDD中的转换算子
大数据·spark
古拉拉明亮之神2 小时前
Spark处理过程--案例数据清洗
大数据·mysql·spark
Leo.yuan2 小时前
可视化数据图表怎么做?如何实现三维数据可视化?
大数据·信息可视化·数据挖掘·数据分析·数据服务
Wnq100724 小时前
养猪场巡检机器人的设计与应用研究
大数据·人工智能·数据挖掘·机器人·巡检机器人·北京玉麟科技巡检机器人
StarRocks_labs12 小时前
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
大数据·数据库·starrocks·分布式·spark·iris·物化视图
董可伦12 小时前
Dinky 安装部署并配置提交 Flink Yarn 任务
android·adb·flink
若兰幽竹13 小时前
【Spark分析HBase数据】Spark读取并分析HBase数据
大数据·spark·hbase