机器学习之SGD(Stochastic Gradient Descent,随机梯度下降)

SGD(Stochastic Gradient Descent,随机梯度下降)是深度学习中最基本的优化算法之一。它是一种迭代式的优化方法,用于训练神经网络和其他机器学习模型。以下是关于SGD优化器的重要信息:

  1. 基本原理:SGD的基本思想是通过不断调整模型参数来最小化损失函数。它每次迭代时从训练数据中随机选择一个小批量(mini-batch)的样本来计算梯度,然后使用梯度的相反方向更新模型参数。这一过程被称为随机梯度下降,因为每次迭代都是基于随机样本的梯度计算。

  2. 学习率:SGD使用一个称为学习率(learning rate)的超参数来控制每次参数更新的步长。学习率的选择很重要,过小的学习率可能导致训练过慢,而过大的学习率可能导致不稳定性和振荡。通常,学习率需要进行调整和优化,可以使用学习率调度策略来改进训练过程。

  3. 批量大小:SGD中的小批量大小是一个重要的超参数。小批量大小的选择会影响训练速度和模型的泛化能力。较小的批量大小可能导致噪声较大的梯度估计,但通常会更快地收敛。较大的批量大小可以提供更稳定的梯度估计,但可能需要更多的内存和计算资源。

  4. 随机性:SGD的随机性是它的一个特点,每次迭代都使用随机样本来估计梯度。这种随机性可以有助于跳出局部极小值,但也可能导致训练过程的不稳定性。因此,通常会使用一些改进的变体,如Mini-Batch SGD、Momentum SGD、Adagrad、RMSProp和Adam等,以在一定程度上控制随机性,并加速收敛。

  5. 收敛性:SGD通常需要大量的迭代来达到收敛,因此可能需要设置一个合适的训练轮数或使用早停策略来确定停止训练的时机。

SGD是深度学习中最基本的优化算法之一,它虽然简单,但仍然在许多深度学习任务中表现良好。然而,在实际应用中,更复杂的优化算法通常更适合处理深度神经网络,因为它们可以更好地处理学习率调整、参数初始化和梯度稳定性等挑战。

相关推荐
qwerasda1238525 分钟前
【深度学习】如何使用YOLO11-RevCol模型进行伤口类型识别与分类 擦伤、瘀伤、烧伤、切割伤以及正常状态检测_2
人工智能·深度学习·分类
柳智敏min6 分钟前
AI学术工具:论文写作的“得力编辑”而非“全程代笔”
人工智能
数字孪生家族6 分钟前
基于视频孪生与空间智能深度融合的智慧城市解决方案
人工智能·智慧城市·数字孪生智慧城市·智慧城市建设方案·视频孪生空间智能双驱动
cici158746 分钟前
计算四连杆机构的运动学
线性代数·算法·机器学习
tzc_fly8 分钟前
多模态慢思考,原子步骤推理
人工智能
cg50178 分钟前
输入模型的训练数据需要变成什么样(基于bert模型)
人工智能·深度学习·bert
北京耐用通信8 分钟前
协议转换“黑科技”:耐达讯自动化CANopen转Profibus 网关破解电机控制通信难题
网络·人工智能·科技·物联网·自动化·信息与通信
范男9 分钟前
工业级变化检测 Baseline:基于 YOLO11 + 孪生网络(Siamese Network)的实战落地
人工智能·深度学习·目标检测·计算机视觉·paddlepaddle
未来之窗软件服务12 分钟前
幽冥大陆(九十八)东方仙盟分词服务混合架构搜索:从词库到AI的精准效率之道—东方仙盟练气期
人工智能·仙盟创梦ide·东方仙盟·分词搜索
Jerryhut13 分钟前
光流估计从原理到实战:基于 Lucas-Kanade 算法与 OpenCV 实现
人工智能·opencv·算法