[ACL2023] Exploring Lottery Prompts for Pre-trained Language Models

Exploring Lottery Prompts for Pre-trained Language Models

文章链接

清深的工作,比较有意思的一篇。作者先给出假设,对于分类问题,在有限的语料空间内总能找到一个prompt让这个问题分类正确,作者称之为lottery prompt。为此,作者组织了一个prompt集合,每个prompt的组成都很简单,名词+动词+介词/形容词/副词+<MASK>,语料都是从常用英语词库中选出的,整个prompt集合一共包含76725个prompt。

之后,作者在RoBERTa-large和GPT-2上进行了测试,每个数据集1000个样例,对于每个样例,只要76725个prompt里有一个prompt能让模型预测正确,那么就算这个样例回答正确,结果表明几乎每个输入都有一个prompt可以作对这个分类。说明至少对于这些分类问题,lottery prompt是存在的。

之后作者分析了搜索到一个正确的prompt所需要的次数,这里的搜索按照作者的说法其实就是在7w个prompt里面枚举的。发现任务越困难,需要的搜索次数就越多,同时在同一个任务中,需要的搜索次数多的也是困难的输入。

而模型的能力也对搜索次数有影响,越大的模型需要的搜索次数越少。同时没有训练过的模型很难找到有效的prompt,经过一定的训练后成功找到的概率则显著上升,搜索次数显著下降。这说明lottery prompt存在确实不是考运气,而是基于模型确实掌握了语言知识。

除了多个prompt对一个input,那自然也有一个prompt对多个input,作者统计了prompt在整个数据集上的表现,除了有66个类的最难的Few-NERD,其他数据集都能找到一个表现不错的prompt。

分析这些优秀的prompt作者也发现他们有一些相似的特征,这里就不详述了。

基于此,作者提出了一种集成prompt方法,在少量的训练集上选出优秀的prompt以后,根据他们的表现赋予不同的权重,表现越好的prompt权重越高,之后将这些prompt的分类预测加权在一起,得到最后的分类。他们的整个集合只有10个prompt,训练集大小为16shot和32shot,效果惊人的不错。

这个方法可以说是很简洁,得到的prompt结构都很简单,集成方式同样简单,整个方法甚至都没有参数,但是打败了像RLPrompt这样参数量巨大的prompt方式。

相关推荐
qq_273900238 分钟前
AF3 squeeze_features函数解读
人工智能·pytorch·深度学习·生物信息学
fanxiaohui121388 分钟前
元脑服务器的创新应用:浪潮信息引领AI计算新时代
运维·服务器·人工智能
新智元10 分钟前
哥大本科生靠 AI 横扫硅谷大厂 offer,学校震怒!预言码农两年内淘汰准备退学
人工智能·面试
新智元21 分钟前
1 次搭建完胜 1 亿次编码,MCP 硅谷疯传!Anthropic 协议解锁智能体「万能手」
人工智能·openai
程序员~小强23 分钟前
让知识触手可及!基于Neo4j的机械设备知识图谱问答系统
人工智能·python·django·知识图谱·neo4j
机器之心29 分钟前
稚晖君的「好东西」揭晓!首个通用具身基座模型,机器人告别「看得懂做不来」
人工智能·openai
大刘讲IT36 分钟前
Zabbix+AI大模型实战:智能故障诊断与工单预警系统设计
人工智能·zabbix
DuDuTalk36 分钟前
DuDuTalk接入DeepSeek,重构企业沟通数字化新范式
大数据·人工智能
ZhuBin36541 分钟前
推测gpt4o视觉皮层建立的过程
人工智能·深度学习·计算机视觉
大数据追光猿44 分钟前
Qwen 模型与 LlamaFactory 结合训练详细步骤教程
大数据·人工智能·深度学习·计算机视觉·语言模型