LRU cache的实现细节优化——伪结点的技巧

LRU cache的实现是面试常见的题目,思路比较简单,可以参考思路

这个题目在实际面试中容易出错,主要是npe和头节点与尾节点的更新,有没有办法避免这一点呢,这时可以发现伪节点的好处,永远不用更新头尾节点,也不用担心出现npe

在双向链表的实现中,使用一个伪头部(dummy head)和伪尾部(dummy tail)标记界限,这样在添加节点和删除节点的时候就不需要检查相邻的节点是否存在。

代码实现:

java 复制代码
import java.util.HashMap;
import java.util.Map;

public class LRUCache {
    class DLinkedNode {
        int key;
        int value;
        DLinkedNode prev;
        DLinkedNode next;
        public DLinkedNode() {}
        public DLinkedNode(int _key, int _value) {key = _key; value = _value;}
    }

    private Map<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>();
    private int size;
    private int capacity;
    private DLinkedNode head, tail;

    public LRUCache(int capacity) {
        this.size = 0;
        this.capacity = capacity;
        // 使用伪头部和伪尾部节点
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        DLinkedNode node = cache.get(key);
        if (node == null) {
            return -1;
        }
        // 如果 key 存在,先通过哈希表定位,再移到头部
        moveToHead(node);
        return node.value;
    }

    public void put(int key, int value) {
        DLinkedNode node = cache.get(key);
        if (node == null) {
            // 如果 key 不存在,创建一个新的节点
            DLinkedNode newNode = new DLinkedNode(key, value);
            // 添加进哈希表
            cache.put(key, newNode);
            // 添加至双向链表的头部
            addToHead(newNode);
            ++size;
            if (size > capacity) {
                // 如果超出容量,删除双向链表的尾部节点
                DLinkedNode tail = removeTail();
                // 删除哈希表中对应的项
                cache.remove(tail.key);
                --size;
            }
        }
        else {
            // 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            node.value = value;
            moveToHead(node);
        }
    }

    private void addToHead(DLinkedNode node) {
        node.prev = head;
        node.next = head.next;
        head.next.prev = node;
        head.next = node;
    }

    private void removeNode(DLinkedNode node) {
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void moveToHead(DLinkedNode node) {
        removeNode(node);
        addToHead(node);
    }

    private DLinkedNode removeTail() {
        DLinkedNode res = tail.prev;
        removeNode(res);
        return res;
    }
}
相关推荐
安之若素^5 分钟前
启用不安全的HTTP方法
java·开发语言
许愿与你永世安宁6 分钟前
力扣343 整数拆分
数据结构·算法·leetcode
爱coding的橙子9 分钟前
每日算法刷题Day42 7.5:leetcode前缀和3道题,用时2h
算法·leetcode·职场和发展
ruanjiananquan9911 分钟前
c,c++语言的栈内存、堆内存及任意读写内存
java·c语言·c++
chuanauc39 分钟前
Kubernets K8s 学习
java·学习·kubernetes
满分观察网友z40 分钟前
从一次手滑,我洞悉了用户输入的所有可能性(3330. 找到初始输入字符串 I)
算法
一头生产的驴1 小时前
java整合itext pdf实现自定义PDF文件格式导出
java·spring boot·pdf·itextpdf
YuTaoShao1 小时前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
Heartoxx1 小时前
c语言-指针(数组)练习2
c语言·数据结构·算法
zzywxc7871 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring