积跬步至千里 || 矩阵可视化

矩阵可视化

矩阵可以很方面地展示事物两两之间的关系,这种关系可以通过矩阵可视化的方式进行简单监控。

定义一个通用类

python 复制代码
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd

class matrix_monitor():
    def __init__(self,min_color=-1,max_color=1,grad=5):
        self.min_color = min_color
        self.max_color = max_color
        self.grad = grad
        
    def fit_transform(self,Matrix):
        data = pd.DataFrame(Matrix)
        #设置色条的刻度:
        tick_=np.arange(self.min_color, self.max_color, self.grad).astype(float)

        #编辑做为参数的字典:
        dict_={'orientation':'vertical',"label":"color  \
        scale","drawedges":True,"ticklocation":"top","extend":"min", \
        "filled":True,"alpha":0.8,"cmap":"cmap","ticks":tick_}

        #将字典传入给参数cbar_kws:
        cmap=sns.heatmap(data,cbar_kws=dict_,center=0.5)

        plt.show()

调用类

python 复制代码
import numpy as np

X = data=np.random.randn(100,10)

model = matrix_monitor()
model.fit_transform(X)

结果展示

另一种方法

python 复制代码
# -*- coding: utf-8 -*-
# @Time    : 2022/9/24 16:33
# @Author  : ***
# @E-mail  : ***
# @File    : draw_heatmap.py

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata


if __name__ == '__main__':
    
    X, Y = np.meshgrid(np.arange(9,0,-1),np.arange(8,0,-1))

    z = np.array([[0.50183977, 0.561332835, 0.625160768, 0.69396128, 0.759163978, 0.802044391, 0.839099501, 0.845485988,
                   1, ],
                  [0.464608121, 0.514854349, 0.571697125, 0.638777513, 0.707394237, 0.757547047, 0.805266426,
                   0.814383193, 0.819529712, ],
                  [0.42307737, 0.46231148, 0.507083231, 0.566034365, 0.631072187, 0.686196609, 0.743523975, 0.755396779,
                   0.762416452, ],
                  [0.385141269, 0.4129182, 0.44453635, 0.492440329, 0.54721264, 0.601517055, 0.666135176, 0.680423041,
                   0.689101386, ],
                  [0.349207249, 0.366696746, 0.384802277, 0.420102726, 0.461066828, 0.515066771, 0.585729701,
                   0.603058967, 0.613716782, ],
                  [0.330000562, 0.341282639, 0.351972084, 0.379004624, 0.410013296, 0.460646534, 0.534264624,
                   0.553158381, 0.564695194, ],
                  [0.319270694, 0.327231515, 0.333579852, 0.35462508, 0.378290545, 0.426066004, 0.500875256,
                   0.520510426, 0.532623573, ],
                  [0.312393427, 0.31783125, 0.321113142, 0.338438575, 0.357088955, 0.401471861, 0.477147046,
                   0.497178064, 0.509567816, ],
                  ])

    c = plt.pcolormesh(X, Y, z, cmap='viridis_r', shading='gouraud')# 彩虹热力图
    # c = plt.pcolormesh(x_r, y_r, z, cmap='viridis_r')# 普通热力图
    plt.colorbar(c, label='AUPR')
    plt.xlabel('x')
    plt.ylabel('y')
#    plt.savefig('heatmap.tif', dpi=300)
    plt.show()
相关推荐
dvlinker2 分钟前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_3 分钟前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆4 分钟前
YOLOP车道检测
人工智能·python·算法
nimadan125 分钟前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_12498707538 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.9 分钟前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能
程序猿追10 分钟前
CANN ops-math仓库解读 数学算子的底层支撑与高性能实现
人工智能·架构
结局无敌10 分钟前
统一算子语言:cann/ops-nn 如何为异构AI世界建立通用“方言”
人工智能·cann
杜子不疼.17 分钟前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人18 分钟前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能