【图像分割】实现snake模型的活动轮廓模型以进行图像分割研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

图像分割是计算机视觉领域的一个重要研究方向,它旨在将图像划分为具有语义意义的区域。Snake(也称为活动轮廓模型)是一种常用的图像分割方法之一,它基于曲线演化的思想,通过优化能量函数来找到图像中感兴趣目标的轮廓。

Snake模型的基本原理是将一条初始曲线放置在图像中,并根据图像的特征进行演化,使曲线逐渐收缩并贴合目标的轮廓。Snake模型的能量函数由两部分组成:内部能量和外部能量。内部能量用于控制曲线的平滑度和长度,外部能量则根据图像的特征来吸引或排斥曲线。

实现Snake模型的关键步骤包括初始化曲线、计算能量函数、优化曲线位置和停止准则。初始化曲线可以通过手动标注或自动初始化方法来得到。能量函数的计算可以基于梯度、边缘、纹理等图像特征。优化曲线位置可以使用迭代优化算法,如梯度下降或演化算法。停止准则可以根据曲线的收敛程度或能量函数的变化来确定。

除了Snake模型,还有其他一些常用的图像分割方法,如基于阈值、基于区域的方法和基于图割的方法等。每种方法都有其优缺点,适用于不同的图像分割场景。

综述图像分割研究时,可以对Snake模型的原理、方法改进以及在不同应用场景下的应用进行综述。此外,还可以对Snake模型与其他图像分割方法进行比较和分析,评估其优劣和适用性。

📚 2 运行结果

部分代码:

% Loop, picking up the points.

disp('Left mouse button picks points.')

disp('Right mouse button picks last point.')

but = 1;

while but == 1

xi,yi,but\] = ginput(1); %pick a new input plot(xi,yi,'ro') n = n+1; xy(:,n) = \[xi;yi\]; end n = n+1; xy(:,n) = \[xy(1,1);xy(2,1)\]; % Interpolate with a spline curve and finer spacing. t = 1:n; ts = 1: 0.1: n; xys = spline(t,xy,ts); xs = xys(1,:); ys = xys(2,:); ## ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 \[1\]邱秀兰.基于改进Snake模型的图像分割算法研究\[D\].重庆邮电大学,2018. \[2\]张猛猛.Snake模型图像分割算法研究\[D\].山东科技大学,2012.DOI:10.7666/d.D301786. \[3\]李倩倩.基于活动轮廓模型的图像分割算法研究与应用\[D\].山东科技大学,2013.DOI:10.7666/d.Y2434761. \[4\]相彬森.基于GVF-Snake模型改进的X线图像分割\[J\].中国体视学与图像分析, 2011, 16(1):4.DOI:CNKI:SUN:ZTSX.0.2011-01-002. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
这张生成的图像能检测吗1 天前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘1 天前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw051 天前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623321 天前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛1 天前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI1 天前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus1 天前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声1 天前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API1 天前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr