【图像分割】实现snake模型的活动轮廓模型以进行图像分割研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

图像分割是计算机视觉领域的一个重要研究方向,它旨在将图像划分为具有语义意义的区域。Snake(也称为活动轮廓模型)是一种常用的图像分割方法之一,它基于曲线演化的思想,通过优化能量函数来找到图像中感兴趣目标的轮廓。

Snake模型的基本原理是将一条初始曲线放置在图像中,并根据图像的特征进行演化,使曲线逐渐收缩并贴合目标的轮廓。Snake模型的能量函数由两部分组成:内部能量和外部能量。内部能量用于控制曲线的平滑度和长度,外部能量则根据图像的特征来吸引或排斥曲线。

实现Snake模型的关键步骤包括初始化曲线、计算能量函数、优化曲线位置和停止准则。初始化曲线可以通过手动标注或自动初始化方法来得到。能量函数的计算可以基于梯度、边缘、纹理等图像特征。优化曲线位置可以使用迭代优化算法,如梯度下降或演化算法。停止准则可以根据曲线的收敛程度或能量函数的变化来确定。

除了Snake模型,还有其他一些常用的图像分割方法,如基于阈值、基于区域的方法和基于图割的方法等。每种方法都有其优缺点,适用于不同的图像分割场景。

综述图像分割研究时,可以对Snake模型的原理、方法改进以及在不同应用场景下的应用进行综述。此外,还可以对Snake模型与其他图像分割方法进行比较和分析,评估其优劣和适用性。

📚 2 运行结果

部分代码:

% Loop, picking up the points.

disp('Left mouse button picks points.')

disp('Right mouse button picks last point.')

but = 1;

while but == 1

xi,yi,but\] = ginput(1); %pick a new input plot(xi,yi,'ro') n = n+1; xy(:,n) = \[xi;yi\]; end n = n+1; xy(:,n) = \[xy(1,1);xy(2,1)\]; % Interpolate with a spline curve and finer spacing. t = 1:n; ts = 1: 0.1: n; xys = spline(t,xy,ts); xs = xys(1,:); ys = xys(2,:); ## ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 \[1\]邱秀兰.基于改进Snake模型的图像分割算法研究\[D\].重庆邮电大学,2018. \[2\]张猛猛.Snake模型图像分割算法研究\[D\].山东科技大学,2012.DOI:10.7666/d.D301786. \[3\]李倩倩.基于活动轮廓模型的图像分割算法研究与应用\[D\].山东科技大学,2013.DOI:10.7666/d.Y2434761. \[4\]相彬森.基于GVF-Snake模型改进的X线图像分割\[J\].中国体视学与图像分析, 2011, 16(1):4.DOI:CNKI:SUN:ZTSX.0.2011-01-002. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
<-->几秒前
pytorch vs ray
人工智能·pytorch·python
知乎的哥廷根数学学派2 分钟前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习
Yuer20254 分钟前
低熵回答倾向:语言模型中的一种系统稳定态
人工智能·机器学习·语言模型·ai安全·edca os
yuzhiboyouye9 分钟前
c/p比结合VIX值,最早的信号
人工智能
Byron Loong11 分钟前
【机器视觉】GTX5050到GTX5090算力比较
人工智能
郝学胜-神的一滴12 分钟前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn
知乎的哥廷根数学学派12 分钟前
基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
yubo050913 分钟前
【无标题】
人工智能·深度学习
AI有元力13 分钟前
GEO优化全链路解密:从策略到服务,系统性赢得AI生态
人工智能
拌面jiang14 分钟前
Word2Vec词嵌入模型
人工智能·自然语言处理·word2vec