【图像分割】实现snake模型的活动轮廓模型以进行图像分割研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

图像分割是计算机视觉领域的一个重要研究方向,它旨在将图像划分为具有语义意义的区域。Snake(也称为活动轮廓模型)是一种常用的图像分割方法之一,它基于曲线演化的思想,通过优化能量函数来找到图像中感兴趣目标的轮廓。

Snake模型的基本原理是将一条初始曲线放置在图像中,并根据图像的特征进行演化,使曲线逐渐收缩并贴合目标的轮廓。Snake模型的能量函数由两部分组成:内部能量和外部能量。内部能量用于控制曲线的平滑度和长度,外部能量则根据图像的特征来吸引或排斥曲线。

实现Snake模型的关键步骤包括初始化曲线、计算能量函数、优化曲线位置和停止准则。初始化曲线可以通过手动标注或自动初始化方法来得到。能量函数的计算可以基于梯度、边缘、纹理等图像特征。优化曲线位置可以使用迭代优化算法,如梯度下降或演化算法。停止准则可以根据曲线的收敛程度或能量函数的变化来确定。

除了Snake模型,还有其他一些常用的图像分割方法,如基于阈值、基于区域的方法和基于图割的方法等。每种方法都有其优缺点,适用于不同的图像分割场景。

综述图像分割研究时,可以对Snake模型的原理、方法改进以及在不同应用场景下的应用进行综述。此外,还可以对Snake模型与其他图像分割方法进行比较和分析,评估其优劣和适用性。

📚 2 运行结果

部分代码:

% Loop, picking up the points.

disp('Left mouse button picks points.')

disp('Right mouse button picks last point.')

but = 1;

while but == 1

[xi,yi,but] = ginput(1); %pick a new input

plot(xi,yi,'ro')

n = n+1;

xy(:,n) = [xi;yi];

end

n = n+1;

xy(:,n) = [xy(1,1);xy(2,1)];

% Interpolate with a spline curve and finer spacing.

t = 1:n;

ts = 1: 0.1: n;

xys = spline(t,xy,ts);

xs = xys(1,:);

ys = xys(2,:);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]邱秀兰.基于改进Snake模型的图像分割算法研究[D].重庆邮电大学,2018.

[2]张猛猛.Snake模型图像分割算法研究[D].山东科技大学,2012.DOI:10.7666/d.D301786.

[3]李倩倩.基于活动轮廓模型的图像分割算法研究与应用[D].山东科技大学,2013.DOI:10.7666/d.Y2434761.

[4]相彬森.基于GVF-Snake模型改进的X线图像分割[J].中国体视学与图像分析, 2011, 16(1):4.DOI:CNKI:SUN:ZTSX.0.2011-01-002.

🌈4 Matlab代码实现

相关推荐
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习1 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手2 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代2 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新2 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
martian6653 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础