LeetCode //C - 141. Linked List Cycle

141. Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to. Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Example 2:

Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

Example 3:

Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.

Constraints:

  • The number of the nodes in the list is in the range [ 0 , 1 0 4 ] [0, 10^4] [0,104].
  • − 1 0 5 < = N o d e . v a l < = 1 0 5 -10^5 <= Node.val <= 10^5 −105<=Node.val<=105
  • pos is -1 or a valid index in the linked-list.

From: LeetCode

Link: 141. Linked List Cycle


Solution:

Ideas:

Fundamental Idea:

Imagine two runners on a circular track, one runner (the hare) is much faster than the other (the tortoise). If they start at the same position and run in the same direction, the faster runner (hare) will eventually lap the slower runner (tortoise). Similarly, in a linked list, if there is a cycle, a faster pointer will eventually meet the slower pointer within the cycle.

Code Explanation:

1. Initialization:

  • We have two pointers: tortoise (slow-moving) and hare (fast-moving). Both start at the head of the linked list.

2. Movement:

  • The tortoise moves one step at a time (tortoise = tortoise->next).
  • The hare moves two steps at a time (hare = hare->next->next).

3. Checking for Cycle:

  • If there is no cycle in the linked list, the hare (which moves faster) will eventually reach the end of the list and encounter a NULL pointer.
  • If there is a cycle, the hare will eventually "lap" the tortoise, and they will meet at some point inside the cycle.

4. Loop Termination:

  • The loop continues as long as hare and hare->next are not NULL.
  • If tortoise and hare pointers meet (tortoise == hare), it indicates the presence of a cycle, and the function returns true.
  • If the loop ends without the pointers meeting, there is no cycle, and the function returns false.
Code:
c 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */

bool hasCycle(struct ListNode *head) {
    if (!head) return false; // If list is empty
    
    struct ListNode *tortoise = head;  // Slow pointer
    struct ListNode *hare = head;      // Fast pointer

    while (hare != NULL && hare->next != NULL) {
        tortoise = tortoise->next;          // Move slow pointer one step
        hare = hare->next->next;            // Move fast pointer two steps
        
        if (tortoise == hare) return true;  // If they meet, there's a cycle
    }

    return false;  // If loop exits, there's no cycle
}
相关推荐
m0_461502692 分钟前
【贪心算法1】
算法·贪心算法
小猿_0013 分钟前
C语言单链表头插法
c语言·开发语言
Doopny@17 分钟前
数字组合(信息学奥赛一本通-1291)
数据结构·算法·动态规划
原来是猿1 小时前
蓝桥备赛(13)- 链表和 list(上)
开发语言·数据结构·c++·算法·链表·list
项目申报小狂人1 小时前
高性能算法NGO!北方苍鹰优化算法(Northern Goshawk Optimization,NGO)
算法·数学建模
且听风吟ayan1 小时前
leetcode day26 重复的子字符串
算法·leetcode·c#
仟濹2 小时前
【算法 C/C++】二维差分
c语言·c++·算法
*星星之火*2 小时前
【GPT入门】第9课 思维树概念与原理
gpt·算法·深度优先
总斯霖2 小时前
题解:士兵排列
数据结构·c++·算法
稳兽龙2 小时前
P4268 [USACO18FEB] Directory Traversal G
c++·算法·换根dp