LeetCode //C - 141. Linked List Cycle

141. Linked List Cycle

Given head, the head of a linked list, determine if the linked list has a cycle in it.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail's next pointer is connected to. Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Example 2:

Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

Example 3:

Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.

Constraints:

  • The number of the nodes in the list is in the range [ 0 , 1 0 4 ] [0, 10^4] [0,104].
  • − 1 0 5 < = N o d e . v a l < = 1 0 5 -10^5 <= Node.val <= 10^5 −105<=Node.val<=105
  • pos is -1 or a valid index in the linked-list.

From: LeetCode

Link: 141. Linked List Cycle


Solution:

Ideas:

Fundamental Idea:

Imagine two runners on a circular track, one runner (the hare) is much faster than the other (the tortoise). If they start at the same position and run in the same direction, the faster runner (hare) will eventually lap the slower runner (tortoise). Similarly, in a linked list, if there is a cycle, a faster pointer will eventually meet the slower pointer within the cycle.

Code Explanation:

1. Initialization:

  • We have two pointers: tortoise (slow-moving) and hare (fast-moving). Both start at the head of the linked list.

2. Movement:

  • The tortoise moves one step at a time (tortoise = tortoise->next).
  • The hare moves two steps at a time (hare = hare->next->next).

3. Checking for Cycle:

  • If there is no cycle in the linked list, the hare (which moves faster) will eventually reach the end of the list and encounter a NULL pointer.
  • If there is a cycle, the hare will eventually "lap" the tortoise, and they will meet at some point inside the cycle.

4. Loop Termination:

  • The loop continues as long as hare and hare->next are not NULL.
  • If tortoise and hare pointers meet (tortoise == hare), it indicates the presence of a cycle, and the function returns true.
  • If the loop ends without the pointers meeting, there is no cycle, and the function returns false.
Code:
c 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     struct ListNode *next;
 * };
 */

bool hasCycle(struct ListNode *head) {
    if (!head) return false; // If list is empty
    
    struct ListNode *tortoise = head;  // Slow pointer
    struct ListNode *hare = head;      // Fast pointer

    while (hare != NULL && hare->next != NULL) {
        tortoise = tortoise->next;          // Move slow pointer one step
        hare = hare->next->next;            // Move fast pointer two steps
        
        if (tortoise == hare) return true;  // If they meet, there's a cycle
    }

    return false;  // If loop exits, there's no cycle
}
相关推荐
pianmian11 小时前
python数据结构基础(7)
数据结构·算法
闲晨1 小时前
C++ 继承:代码传承的魔法棒,开启奇幻编程之旅
java·c语言·开发语言·c++·经验分享
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20244 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸4 小时前
链表的归并排序
数据结构·算法·链表
jrrz08284 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time4 小时前
golang学习2
算法
南宫生5 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步6 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
DARLING Zero two♡6 小时前
关于我、重生到500年前凭借C语言改变世界科技vlog.16——万字详解指针概念及技巧
c语言·开发语言·科技