土豆叶病害识别(图像连续识别和视频识别)

效果视频:土豆叶病害识别(Python代码,pyTorch框架,视频识别)_哔哩哔哩_bilibili

代码运行要求:Torch库>=1.13.1,其它库无版本要求

1..土豆叶数据集主要包好三种类别(Early_Blight(早期枯萎病),Late_Blight(晚期枯萎病)Healthy(正常))

Early_Blight 照片(有1303张)

Late_Blight 照片(有1132张)

Healthy照片(有816张)

2,本次项目文件夹

第一个文件夹(data): 装载的是原始图像

第二个文件夹(GUI):装载的是随意选取的图像,供vedio_creat.py处理后生成视频。

第三个文件夹(piture):装载的是经hf.py对data文件夹处理后,生成的训练集和测试集

第四个文件是class_indices.json是装载的标签和对应类别名称

第五个文件:CNN.pth是装载训练好的模型参数

第六个文件:GUI_VEDIO.py是呈现GUI界面,包括对图像连续识别和对视频识别

第七个文件:hf.py是对data文件夹进行操作,生成训练集和测试集

第八个文件:model.py是模型

第九个文件:predict.py是对单独的照片(tulip.jpg)进行识别

第十个文件:train.pys是训练脚本

第十一个文件:vedio.mp4,是以一帧一秒的速度,将一个个的图像经vedio_creat.py处理后,生成视频,以模拟无人机采集的的农业视频,做实时检测。视频识别的时候,也是以一秒一帧的速度取图像。

对项目感兴趣的可以关注:

复制代码
import threading
import os
import json
import torch
import cv2
from PIL import Image
from torchvision import transforms
import tkinter as tk
from tkinter import filedialog
from model import CNN
from PIL import ImageTk
#压缩包https://mbd.pub/o/bread/ZJ2Xl59y
相关推荐
Work(沉淀版)2 小时前
DAY 40
人工智能·深度学习·机器学习
蓦然回首却已人去楼空3 小时前
Build a Large Language Model (From Scratch) 序章
人工智能·语言模型·自然语言处理
CM莫问3 小时前
<论文>(微软)WINA:用于加速大语言模型推理的权重感知神经元激活
人工智能·算法·语言模型·自然语言处理·大模型·推理加速
拾忆-eleven3 小时前
NLP学习路线图(二十六):自注意力机制
人工智能·深度学习
MYH5164 小时前
在NLP文本处理中,将字符映射到阿拉伯数字(构建词汇表vocab)的核心目的和意义
人工智能·深度学习·自然语言处理
程序员的世界你不懂4 小时前
Appium+python自动化(八)- 认识Appium- 下章
python·appium·自动化
要努力啊啊啊4 小时前
KV Cache:大语言模型推理加速的核心机制详解
人工智能·语言模型·自然语言处理
_r0bin_4 小时前
前端面试准备-7
开发语言·前端·javascript·fetch·跨域·class
zhang98800004 小时前
JavaScript 核心原理深度解析-不停留于表面的VUE等的使用!
开发语言·javascript·vue.js
恸流失4 小时前
DJango项目
后端·python·django