数学建模及数据分析 || 4. 深度学习应用案例分享

PyTorch 深度学习全连接网络分类

文章目录

  • [PyTorch 深度学习全连接网络分类](#PyTorch 深度学习全连接网络分类)
    • [1. 非线性二分类](#1. 非线性二分类)
    • [2. 泰坦尼克号数据分类](#2. 泰坦尼克号数据分类)
      • [2.1 数据的准备工作](#2.1 数据的准备工作)
      • [2.2 全连接网络的搭建](#2.2 全连接网络的搭建)
      • [2.3 结果的可视化](#2.3 结果的可视化)

1. 非线性二分类

python 复制代码
import sklearn.datasets #数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score

import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn as nn

np.random.seed(0) #设置随机数种子
X, Y = sklearn. datasets. make_moons (200, noise=0.2) # 生成内组半圆形数据

arg = np.squeeze(np.argwhere(Y==0),axis = 1) # 获取第1类数据索引
arg2 = np.squeeze(np.argwhere (Y==1), axis = 1) # 获取第2类数据索引
plt.title("moons data") 
plt.scatter(X[arg,0], X[arg, 1], s=100, c='b' , marker='+' , label='data1')
plt.scatter(X[arg2,0], X[arg2, 1], s=40, c='r' ,marker='o' , label= 'data2')
plt.legend()
plt.show()
python 复制代码
#继承nn.Module类,构建网络模型
class LogicNet(nn.Module):
    def __init__(self,inputdim,hiddendim,outputdim):#初始化网络结构
        super(LogicNet,self).__init__()
        self.Linear1 = nn.Linear(inputdim,hiddendim) #定义全连接层
        self.Linear2 = nn.Linear(hiddendim,outputdim)#定义全连接层
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数

    def forward(self,x): #搭建用两层全连接组成的网络模型
        x = self.Linear1(x)#将输入数据传入第1层
        x = torch.tanh(x)#对第一层的结果进行非线性变换
        x = self.Linear2(x)#再将数据传入第2层
#        print("LogicNet")
        return x

    def predict(self,x):#实现LogicNet类的预测接口
        #调用自身网络模型,并对结果进行softmax处理,分别得出预测数据属于每一类的概率
        pred = torch.softmax(self.forward(x),dim=1)
        return torch.argmax(pred,dim=1)  #返回每组预测概率中最大的索引

    def getloss(self,x,y): #实现LogicNet类的损失值计算接口
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)#计算损失值得交叉熵
        return loss
    
model = LogicNet(inputdim=2,hiddendim=3,outputdim=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
python 复制代码
def moving_average(a, w=10):#定义函数计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

def plot_losses(losses):
    avgloss= moving_average(losses) #获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)), avgloss, 'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs. Training loss')
    plt.show()
python 复制代码
def predict(model,x):   #封装支持Numpy的预测接口
    x = torch.from_numpy(x).type(torch.FloatTensor)
    ans = model.predict(x)
    return ans.numpy()

def plot_decision_boundary(pred_func,X,Y):#在直角坐标系中可视化模型能力
    #计算取值范围
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.01
    #在坐标系中采用数据,生成网格矩阵,用于输入模型
    xx,yy=np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    #将数据输入并进行预测
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    #将预测的结果可视化
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.title("Linear predict")
    arg = np.squeeze(np.argwhere(Y==0),axis = 1)
    arg2 = np.squeeze(np.argwhere(Y==1),axis = 1)
    plt.scatter(X[arg,0], X[arg,1], s=100,c='b',marker='+')
    plt.scatter(X[arg2,0], X[arg2,1],s=40, c='r',marker='o')
    plt.show()
python 复制代码
if __name__ == '__main__':
    xt = torch.from_numpy(X).type(torch.FloatTensor)
    yt = torch.from_numpy(Y).type(torch.LongTensor)
    epochs = 1000
    losses = []
    for i in range(epochs):
        loss = model.getloss(xt,yt)
        losses.append(loss.item())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
    plot_losses(losses)
    print(accuracy_score(model.predict(xt),yt))
    plot_decision_boundary(lambda x: predict(model,x), xt.numpy(), yt.numpy())

0.98

2. 泰坦尼克号数据分类

2.1 数据的准备工作

计算模块和数据的准备

python 复制代码
import os
import numpy as np
import pandas as pd
from scipy import stats

import torch
import torch.nn as nn
import torch.nn.functional as F


titanic_data = pd.read_csv("titanic3.csv")
print(titanic_data.columns )
print('\n',titanic_data.dtypes)

Index(['pclass', 'survived', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket',

'fare', 'cabin', 'embarked', 'boat', 'body', 'home.dest'],

dtype='object')


pclass int64

survived int64

name object

sex object

age float64

sibsp int64

parch int64

ticket object

fare float64

cabin object

embarked object

boat object

body float64

home.dest object

dtype: object

对哑变量的处理

python 复制代码
#用哑变量将指定字段转成one-hot
titanic_data = pd.concat([titanic_data,
                          pd.get_dummies(titanic_data['sex']),
                          pd.get_dummies(titanic_data['embarked'],prefix="embark"),
                          pd.get_dummies(titanic_data['pclass'],prefix="class")], axis=1)

print(titanic_data.columns )
print(titanic_data['sex'])
print(titanic_data['female'])

Index(['pclass', 'survived', 'name', 'sex', 'age', 'sibsp', 'parch', 'ticket',

'fare', 'cabin', 'embarked', 'boat', 'body', 'home.dest', 'female',

'male', 'embark_C', 'embark_Q', 'embark_S', 'class_1', 'class_2',

'class_3'],

dtype='object')

0 female

1 male

2 female

3 male

4 female

...

1304 female

1305 female

1306 male

1307 male

1308 male

Name: sex, Length: 1309, dtype: object

0 1

1 0

2 1

3 0

4 1

...

1304 1

1305 1

1306 0

1307 0

1308 0

Name: female, Length: 1309, dtype: uint8

对缺失值的处理

python 复制代码
#处理None值
titanic_data["age"] = titanic_data["age"].fillna(titanic_data["age"].mean())
titanic_data["fare"] = titanic_data["fare"].fillna(titanic_data["fare"].mean())#乘客票价

#删去无用的列
titanic_data = titanic_data.drop(['name','ticket','cabin','boat','body','home.dest','sex','embarked','pclass'], axis=1)
print(titanic_data.columns)

Index(['survived', 'age', 'sibsp', 'parch', 'fare', 'female', 'male',

'embark_C', 'embark_Q', 'embark_S', 'class_1', 'class_2', 'class_3'],

dtype='object')

划分训练集和测试集

python 复制代码
#分离样本和标签
labels = titanic_data["survived"].to_numpy()

titanic_data = titanic_data.drop(['survived'], axis=1)
data = titanic_data.to_numpy()

#样本的属性名称
feature_names = list(titanic_data.columns)


#将样本分为训练和测试两部分
np.random.seed(10)#设置种子,保证每次运行所分的样本一致
train_indices = np.random.choice(len(labels), int(0.7*len(labels)), replace=False)
test_indices = list(set(range(len(labels))) - set(train_indices))
train_features = data[train_indices]
train_labels = labels[train_indices]
test_features = data[test_indices]
test_labels = labels[test_indices]
len(test_labels)#393

2.2 全连接网络的搭建

搭建全连接网络

python 复制代码
torch.manual_seed(0)  #设置随机种子

class ThreelinearModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(12, 12)
        self.mish1 = Mish()
        self.linear2 = nn.Linear(12, 8)
        self.mish2 = Mish()
        self.linear3 = nn.Linear(8, 2)
        self.softmax = nn.Softmax(dim=1)
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数

    def forward(self, x): #定义一个全连接网络
        lin1_out = self.linear1(x)
        out1 = self.mish1(lin1_out)
        out2 = self.mish2(self.linear2(out1))

        return self.softmax(self.linear3(out2))
    

    def getloss(self,x,y): #实现LogicNet类的损失值计算接口
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)#计算损失值得交叉熵
        return loss

class Mish(nn.Module):#Mish激活函数
    def __init__(self):
        super().__init__()
        print("Mish activation loaded...")
    def forward(self,x):
        x = x * (torch.tanh(F.softplus(x)))
        return x

net = ThreelinearModel()
optimizer = torch.optim.Adam(net.parameters(), lr=0.04)

训练网络

python 复制代码
num_epochs = 200

input_tensor = torch.from_numpy(train_features).type(torch.FloatTensor)
label_tensor = torch.from_numpy(train_labels)

losses = []#定义列表,用于接收每一步的损失值
for epoch in range(num_epochs): 
    loss = net.getloss(input_tensor,label_tensor)
    losses.append(loss.item())
    optimizer.zero_grad()#清空之前的梯度
    loss.backward()#反向传播损失值
    optimizer.step()#更新参数
    if epoch % 20 == 0:
        print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1, num_epochs, loss.item()))

#os.makedirs('models', exist_ok=True)
#torch.save(net.state_dict(), 'models/titanic_model.pt')  

Epoch 1/200 => Loss: 0.72

Epoch 21/200 => Loss: 0.55

Epoch 41/200 => Loss: 0.52

Epoch 61/200 => Loss: 0.49

Epoch 81/200 => Loss: 0.49

Epoch 101/200 => Loss: 0.48

Epoch 121/200 => Loss: 0.48

Epoch 141/200 => Loss: 0.48

Epoch 161/200 => Loss: 0.48

Epoch 181/200 => Loss: 0.48

2.3 结果的可视化

可视化函数

python 复制代码
import matplotlib.pyplot as plt

def moving_average(a, w=10):#定义函数计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

def plot_losses(losses):
    avgloss= moving_average(losses) #获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)), avgloss, 'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs. Training loss')
    plt.show()

调用可视化函数作图

python 复制代码
plot_losses(losses)

#输出训练结果
out_probs = net(input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Train Accuracy:", sum(out_classes == train_labels) / len(train_labels))

#测试模型
test_input_tensor = torch.from_numpy(test_features).type(torch.FloatTensor)
out_probs = net(test_input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Test Accuracy:", sum(out_classes == test_labels) / len(test_labels))

Train Accuracy: 0.8384279475982532

Test Accuracy: 0.806615776081425

相关推荐
编码浪子10 分钟前
Transformer的编码机制
人工智能·深度学习·transformer
IE0624 分钟前
深度学习系列76:流式tts的一个简单实现
人工智能·深度学习
胡萝卜不甜3 小时前
数学建模论文通用模板(细节方法二)
数学建模
m0_743106465 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106465 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
AI浩8 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
IE0610 小时前
深度学习系列75:sql大模型工具vanna
深度学习
不惑_10 小时前
深度学习 · 手撕 DeepLearning4J ,用Java实现手写数字识别 (附UI效果展示)
java·深度学习·ui
CM莫问11 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
余炜yw11 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习