【考研数学】线形代数第三章——向量 | 3)向量秩的性质、向量空间、过渡矩阵

文章目录


引言

紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。


三、向量组等价、向量组的极大线性无关组与秩

3.2 向量组秩的性质

性质 1(三秩相等) ------ 设 A = ( β 1 , β 2 , ... , β n ) = ( α 1 , α 2 , ... , α n ) T \pmb{A=(\beta_1,\beta_2,\dots,\beta_n)=(\alpha_1,\alpha_2,\dots,\alpha_n)^T} A=(β1,β2,...,βn)=(α1,α2,...,αn)T ,其中 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 与 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 分别为矩阵 A A A 的行向量组和列向量组,则矩阵 A A A 的秩、 A A A 的行向量组的秩、 A A A 的列向量组的秩相等。

性质 2 ------ 设 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 与 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 为两个维数相同的向量组,若向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 的秩不超过向量组 B B B 的秩。

性质 3 ------ 等价的向量组秩相等,反之不对。

1,设向量组 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 与 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 的秩相等,且向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 与向量组 B B B 等价。

2,设向量组 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 可由 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 线性表示,但向量组 A A A 不可由向量组 B B B 线性表示,则向量组 A A A 的秩小于向量组 B B B 。

3,两个等价的向量组,各自构成的矩阵也等价,但反之不一定。


四、 n n n 维向量空间

4.1 基本概念

n n n 维向量空间 ------ 所有 n n n 维向量连同向量的加法及数与向量的乘法运算称为 n n n 维向量空间,记为 R n . \pmb{R}^n. Rn.

------ 设 R n \pmb{R}^n Rn 为 n n n 维向量空间,设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为向量空间中的 n n n 个向量,若满足:

(1) α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性无关;

(2)对任意的 β ∈ R n , β \pmb{\beta \in R^n,\beta} β∈Rn,β 都可由向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性表示,

称 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 n n n 维向量空间 R n R^n Rn 的基。

特别地,若 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 两两正交,且都是单位向量,称其为正交规范基。

向量在基下的坐标 ------ 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,若 β = k 1 α 1 + k 2 α 2 + ⋯ + k n α n \beta=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n β=k1α1+k2α2+⋯+knαn ,称 ( k 1 , k 2 , ... , k n ) (k_1,k_2,\dots,k_n) (k1,k2,...,kn) 为向量 β \beta β 在基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 下的坐标。

过渡矩阵 ------ 由一组基变换为另一组基,可乘上一个矩阵,该矩阵称为过渡矩阵。

需要一些直观印象,才能更好理解向量空间。首先应理解的是,一个矩阵就代表一种变换。

4.2 基本性质

定理 1 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 n n n 维向量空间 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,令 A = ( α 1 , α 2 , ... , α n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}) A=(α1,α2,...,αn) ,则向量 β \beta β 在基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 下的坐标为 X = A − 1 β . \pmb{X=A^{-1}\beta}. X=A−1β.

定理 2 ------ 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 与 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 为向量空间 R n R^n Rn 的两个基,令 A = ( α 1 , α 2 , ... , α n ) , B = ( β 1 , β 2 , ... , β n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}),B=(\pmb{\beta_1,\beta_2,\dots,\beta_n}) A=(α1,α2,...,αn),B=(β1,β2,...,βn) ,则从基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 的过渡矩阵为 Q = A − 1 B . \pmb{Q=A^{-1}B}. Q=A−1B.

定理 3 ------ 从基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 的过渡矩阵与从基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 到基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到的过渡矩阵互为逆矩阵。


写在最后

到此,向量的理论部分就结束了。矩阵、向量、方程组三者的联系最近会总结发出来的。

相关推荐
曹文杰15190301128 小时前
2025 年大模型背景下应用统计本科 计算机方向 培养方案
python·线性代数·机器学习·学习方法
jidawanghao19 小时前
2026年考研回溯:2026清华大学在职 应用统计432真题
考研
yesyesyoucan1 天前
AI证件照生成技术全解析:人脸识别、背景分割与格式合规性实现方案
人工智能·考研·高考
蒙奇D索大1 天前
【11408学习记录】考研英语长难句拆解三步法:三步拆解2020年真题,攻克阅读难点
笔记·学习·考研·改行学it
闻缺陷则喜何志丹2 天前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
蒙奇D索大2 天前
【数据结构】考研408 | 伪随机探测与双重散列精讲:散列的艺术与均衡之道
数据结构·笔记·学习·考研
点云侠2 天前
粒子群优化算法求解三维变换矩阵的数学推导
线性代数·算法·矩阵
元亓亓亓2 天前
考研408--组成原理--day9--栈帧的访问与切换&CPU
考研·栈帧·408·组成原理
AI科技星3 天前
圆柱螺旋运动方程的一步步求导与实验数据验证
开发语言·数据结构·经验分享·线性代数·算法·数学建模
蒙奇D索大3 天前
【数据结构】考研408 | 平方探测法精讲:跳跃探查的艺术与聚集迷思
数据结构·笔记·考研·改行学it