【考研数学】线形代数第三章——向量 | 3)向量秩的性质、向量空间、过渡矩阵

文章目录


引言

紧接前文学习完向量组秩的基本概念后,继续往后学习向量的内容。


三、向量组等价、向量组的极大线性无关组与秩

3.2 向量组秩的性质

性质 1(三秩相等) ------ 设 A = ( β 1 , β 2 , ... , β n ) = ( α 1 , α 2 , ... , α n ) T \pmb{A=(\beta_1,\beta_2,\dots,\beta_n)=(\alpha_1,\alpha_2,\dots,\alpha_n)^T} A=(β1,β2,...,βn)=(α1,α2,...,αn)T ,其中 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 与 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 分别为矩阵 A A A 的行向量组和列向量组,则矩阵 A A A 的秩、 A A A 的行向量组的秩、 A A A 的列向量组的秩相等。

性质 2 ------ 设 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 与 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 为两个维数相同的向量组,若向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 的秩不超过向量组 B B B 的秩。

性质 3 ------ 等价的向量组秩相等,反之不对。

1,设向量组 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 与 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 的秩相等,且向量组 A A A 可由向量组 B B B 线性表示,则向量组 A A A 与向量组 B B B 等价。

2,设向量组 A : α 1 , α 2 , ... , α n A:\pmb{\alpha_1,\alpha_2,\dots,\alpha_n} A:α1,α2,...,αn 可由 B : β 1 , β 2 , ... , β n B:\pmb{\beta_1,\beta_2,\dots,\beta_n} B:β1,β2,...,βn 线性表示,但向量组 A A A 不可由向量组 B B B 线性表示,则向量组 A A A 的秩小于向量组 B B B 。

3,两个等价的向量组,各自构成的矩阵也等价,但反之不一定。


四、 n n n 维向量空间

4.1 基本概念

n n n 维向量空间 ------ 所有 n n n 维向量连同向量的加法及数与向量的乘法运算称为 n n n 维向量空间,记为 R n . \pmb{R}^n. Rn.

------ 设 R n \pmb{R}^n Rn 为 n n n 维向量空间,设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为向量空间中的 n n n 个向量,若满足:

(1) α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性无关;

(2)对任意的 β ∈ R n , β \pmb{\beta \in R^n,\beta} β∈Rn,β 都可由向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性表示,

称 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 n n n 维向量空间 R n R^n Rn 的基。

特别地,若 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 两两正交,且都是单位向量,称其为正交规范基。

向量在基下的坐标 ------ 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,若 β = k 1 α 1 + k 2 α 2 + ⋯ + k n α n \beta=k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n β=k1α1+k2α2+⋯+knαn ,称 ( k 1 , k 2 , ... , k n ) (k_1,k_2,\dots,k_n) (k1,k2,...,kn) 为向量 β \beta β 在基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 下的坐标。

过渡矩阵 ------ 由一组基变换为另一组基,可乘上一个矩阵,该矩阵称为过渡矩阵。

需要一些直观印象,才能更好理解向量空间。首先应理解的是,一个矩阵就代表一种变换。

4.2 基本性质

定理 1 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 为 n n n 维向量空间 R n R^n Rn 的基, β ∈ R n \beta \in R^n β∈Rn ,令 A = ( α 1 , α 2 , ... , α n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}) A=(α1,α2,...,αn) ,则向量 β \beta β 在基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 下的坐标为 X = A − 1 β . \pmb{X=A^{-1}\beta}. X=A−1β.

定理 2 ------ 设 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 与 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 为向量空间 R n R^n Rn 的两个基,令 A = ( α 1 , α 2 , ... , α n ) , B = ( β 1 , β 2 , ... , β n ) A=(\pmb{\alpha_1,\alpha_2,\dots,\alpha_n}),B=(\pmb{\beta_1,\beta_2,\dots,\beta_n}) A=(α1,α2,...,αn),B=(β1,β2,...,βn) ,则从基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 的过渡矩阵为 Q = A − 1 B . \pmb{Q=A^{-1}B}. Q=A−1B.

定理 3 ------ 从基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 的过渡矩阵与从基 β 1 , β 2 , ... , β n \pmb{\beta_1,\beta_2,\dots,\beta_n} β1,β2,...,βn 到基 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 到的过渡矩阵互为逆矩阵。


写在最后

到此,向量的理论部分就结束了。矩阵、向量、方程组三者的联系最近会总结发出来的。

相关推荐
豆沙沙包?5 小时前
2025年--Lc169--H36.有效的数独(矩阵)--Java版
线性代数·矩阵
丰锋ff10 小时前
2013 年真题配套词汇单词笔记(考研真相)
笔记·学习·考研
丰锋ff18 小时前
2007 年真题配套词汇单词笔记(考研真相)
笔记·学习·考研
一水鉴天1 天前
整体设计 逻辑系统程序 之14 彻底分析了的四类文字/三种数字/三套符号
线性代数
岑梓铭1 天前
计算机网络第四章(10)——网络层《路由算法+路由协议》
网络·笔记·计算机网络·考研·智能路由器·408
WWZZ20252 天前
ORB_SLAM2原理及代码解析:单应矩阵H、基础矩阵F求解
线性代数·算法·计算机视觉·机器人·slam·基础矩阵·单应矩阵
Mingze03142 天前
考研408之栈与队列学习
开发语言·c++·学习·考研·算法
丰锋ff2 天前
2024 年真题配套词汇单词笔记(考研真相)
笔记·考研
蒙奇D索大2 天前
【数据结构】考研算法精讲:分块查找的深度剖析 | 从“块内无序、块间有序”思想到ASL性能最优解
数据结构·笔记·学习·考研·改行学it
丰锋ff3 天前
2010 年真题配套词汇单词笔记(考研真相)
笔记·学习·考研