HQL解决连续三天登陆问题

1.背景

统计连续登录天数超过3天的用户,输出信息包括:用户id,登录天数,起始时间,结束时间;

2.准备数据

sql 复制代码
-- 建表
create table if not exists user_login_3days(
    user_id STRING,
    login_date date
);

--插入数据
insert into user_login_3days values ('01','2023-08-02');
insert into user_login_3days values ('01','2023-08-03');
insert into user_login_3days values ('01','2023-08-04');
insert into user_login_3days values ('01','2023-11-02');
insert into user_login_3days values ('01','2023-12-09');
insert into user_login_3days values ('02','2023-01-01');
insert into user_login_3days values ('02','2023-04-23');
insert into user_login_3days values ('03','2023-09-10');
insert into user_login_3days values ('03','2023-09-11');
insert into user_login_3days values ('03','2023-09-12');
insert into user_login_3days values ('04','2023-04-23');
insert into user_login_3days values ('04','2023-04-24');
insert into user_login_3days values ('05','2023-09-11');
insert into user_login_3days values ('06','2023-09-12');

-- 查询数据数据
select * from user_login_3days order by user_id;

3.解决思路以及实现

思路1:row_number()

  • 1.通过对用户id进行开窗函数row_number,对登陆时间进行降序排列
  • 2.使用date_sub(login_date,rn)函数进行日期求出差值日期
  • 3.对user_id和diff_date分组求出时间的区间范围
  • 4.对结果进行过滤操作
sql 复制代码
SELECT
 t2.user_id,
 count(1)           as login_times,
 min(t2.login_date) as start_date,
 max(t2.login_date) as end_date
FROM
(
    SELECT
     t1.user_id,
     t1.login_date,
     date_sub(t1.login_date,rn) as diff_date
    FROM
    (
        SELECT
         user_id,
         login_date,
         row_number() over(partition by user_id order by login_date asc) as rn
        FROM user_login_3days
    ) t1
) t2
group by t2.user_id, t2.diff_date
having login_times >= 3;

思路2:lag()/lead()

  • 1.通过对用户id进行开窗函数lag/lead,求出前面第二个的日期与当前的日期差以及后面一个日期与当前日期的差值
  • 2.对结果进行过滤操作
sql 复制代码
SELECT
  user_id,
  lag_login_date,
  login_date
FROM
      (SELECT
         user_id,
         login_date,
         lag(login_date,2,login_date) over(partition by user_id order by login_date) as lag_login_date,
         lead(login_date,1,login_date) over(partition by user_id order by login_date) as lead_login_date
      FROM user_login_3days
      ) t1
where datediff(login_date,lag_login_date) =2

4.总结

连续登陆问题解决的关键在于:如何判断连续?

通过对user_id分组排序后,使用登陆日期减去序号rn。如果连续,则得到的这个日期会相同。

相关推荐
weixin_307779136 小时前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
王小王-12311 小时前
基于Hadoop的公共自行车数据分布式存储和计算平台的设计与实现
大数据·hive·hadoop·分布式·hadoop公共自行车·共享单车大数据分析·hadoop共享单车
王小王-12314 小时前
基于Hadoop的大规模文本词频统计分析系统设计与实现
hadoop·mapreduce·hadoop词频统计·hadoop文本统计·mapreduce词频统计
陈敬雷-充电了么-CEO兼CTO16 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
桂成林20 小时前
Hive UDF 开发实战:MD5 哈希函数实现
hive·hadoop·哈希算法
isNotNullX20 小时前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
王小王-1231 天前
基于Hadoop的京东厨具商品数据分析及商品价格预测系统的设计与实现
hadoop·数据分析·京东厨具·厨具分析·商品分析
谷新龙0012 天前
大数据环境搭建指南:基于 Docker 构建 Hadoop、Hive、HBase 等服务
大数据·hadoop·docker
百度Geek说2 天前
搜索数据建设系列之数据架构重构
数据仓库·重构·架构·spark·dubbo
爱吃面的猫2 天前
大数据Hadoop之——Hbase下载安装部署
大数据·hadoop·hbase