HQL解决连续三天登陆问题

1.背景

统计连续登录天数超过3天的用户,输出信息包括:用户id,登录天数,起始时间,结束时间;

2.准备数据

sql 复制代码
-- 建表
create table if not exists user_login_3days(
    user_id STRING,
    login_date date
);

--插入数据
insert into user_login_3days values ('01','2023-08-02');
insert into user_login_3days values ('01','2023-08-03');
insert into user_login_3days values ('01','2023-08-04');
insert into user_login_3days values ('01','2023-11-02');
insert into user_login_3days values ('01','2023-12-09');
insert into user_login_3days values ('02','2023-01-01');
insert into user_login_3days values ('02','2023-04-23');
insert into user_login_3days values ('03','2023-09-10');
insert into user_login_3days values ('03','2023-09-11');
insert into user_login_3days values ('03','2023-09-12');
insert into user_login_3days values ('04','2023-04-23');
insert into user_login_3days values ('04','2023-04-24');
insert into user_login_3days values ('05','2023-09-11');
insert into user_login_3days values ('06','2023-09-12');

-- 查询数据数据
select * from user_login_3days order by user_id;

3.解决思路以及实现

思路1:row_number()

  • 1.通过对用户id进行开窗函数row_number,对登陆时间进行降序排列
  • 2.使用date_sub(login_date,rn)函数进行日期求出差值日期
  • 3.对user_id和diff_date分组求出时间的区间范围
  • 4.对结果进行过滤操作
sql 复制代码
SELECT
 t2.user_id,
 count(1)           as login_times,
 min(t2.login_date) as start_date,
 max(t2.login_date) as end_date
FROM
(
    SELECT
     t1.user_id,
     t1.login_date,
     date_sub(t1.login_date,rn) as diff_date
    FROM
    (
        SELECT
         user_id,
         login_date,
         row_number() over(partition by user_id order by login_date asc) as rn
        FROM user_login_3days
    ) t1
) t2
group by t2.user_id, t2.diff_date
having login_times >= 3;

思路2:lag()/lead()

  • 1.通过对用户id进行开窗函数lag/lead,求出前面第二个的日期与当前的日期差以及后面一个日期与当前日期的差值
  • 2.对结果进行过滤操作
sql 复制代码
SELECT
  user_id,
  lag_login_date,
  login_date
FROM
      (SELECT
         user_id,
         login_date,
         lag(login_date,2,login_date) over(partition by user_id order by login_date) as lag_login_date,
         lead(login_date,1,login_date) over(partition by user_id order by login_date) as lead_login_date
      FROM user_login_3days
      ) t1
where datediff(login_date,lag_login_date) =2

4.总结

连续登陆问题解决的关键在于:如何判断连续?

通过对user_id分组排序后,使用登陆日期减去序号rn。如果连续,则得到的这个日期会相同。

相关推荐
viperrrrrrrrrr728 分钟前
大数据学习(137)-大数据组件运行时角色
大数据·hive·学习·flink·spark
江畔独步4 小时前
Doris与DS结合实现MySQL侧的Upsert功能
数据仓库·mysql·doris·upsert
安审若无7 小时前
Hive的索引使用如何优化?
数据仓库·hive·hadoop
青春之我_XP18 小时前
【基于阿里云搭建数据仓库(离线)】使用UDTF时出现报错“FlatEventUDTF cannot be resolved”
数据仓库·sql·阿里云·云计算·dataworks·maxcompute
小王不会写code1 天前
Hadoop 2.7.7 单机伪分布式安装与配置教程(JDK 8)
java·hadoop·分布式
zh_199951 天前
Hive面试题汇总
大数据·hive·hadoop·架构·面试题
Kookoos1 天前
ABP vNext + Spark on Hadoop:实时流处理与微服务融合
hadoop·微服务·spark·.net·abp vnext
是梦终空1 天前
JAVA毕业设计227—基于SpringBoot+hadoop+spark+Vue的大数据房屋维修系统(源代码+数据库)
hadoop·spring boot·spark·vue·毕业设计·源代码·大数据房屋维修系统
£菜鸟也有梦2 天前
Flume进阶之路:从基础到高阶的飞跃
大数据·hive·hadoop·flume
Kookoos2 天前
ABP vNext + Hive 集成:多租户大数据 SQL 查询与报表分析
大数据·hive·sql·.net·abp vnext