Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

复制代码
pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)

predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
    x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标
    image = Image.open(r"D:\Desktop\tp.png")
    cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像
    output_path = f"output_{num}.jpg"
    cropped_image.save(output_path)  # 保存裁剪后的图像
    num += 1

被检测的图片:

预测主体效果:

如果在原图的基础上查看代码如下:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

相关推荐
合作小小程序员小小店25 分钟前
web网页开发,在线%聚类,微博,舆情%系统,基于python,pycharm,django,nlp,kmeans,mysql
python·pycharm·kmeans·聚类·sklearn·kmean
Dan.Qiao25 分钟前
python读文件readline和readlines区别和惰性读
开发语言·python·惰性读文件
闲人编程1 小时前
将你的旧手机变成监控摄像头(Python + OpenCV)
python·opencv·智能手机·监控·codecapsule·oasis
007php0071 小时前
大厂深度面试相关文章:深入探讨底层原理与高性能优化
java·开发语言·git·python·面试·职场和发展·性能优化
SunnyDays10111 小时前
Python 复制和移动 Excel 工作表并保留所有格式:详解
python·复制excel工作表·移动excel工作表·重新排列excel工作表
不会编程的小寒1 小时前
C++初始继承,继承中构造、析构顺序
开发语言·python
城南皮卡丘1 小时前
【数据集+源码】基于yolov11+streamlit的玉米叶片病虫害检测系统
yolo·目标检测·计算机视觉·智慧农业·玉米病害检测
Mos_x2 小时前
关于我们的python日记本
开发语言·python
十重幻想2 小时前
reshape的共享内存
python
Juchecar2 小时前
设计模式不是Java专属,其他语言的使用方法
java·python·设计模式