Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

复制代码
pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)

predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
    x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标
    image = Image.open(r"D:\Desktop\tp.png")
    cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像
    output_path = f"output_{num}.jpg"
    cropped_image.save(output_path)  # 保存裁剪后的图像
    num += 1

被检测的图片:

预测主体效果:

如果在原图的基础上查看代码如下:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

相关推荐
SsummerC15 分钟前
【leetcode100】括号生成
python·算法·leetcode
xcy4509228731 小时前
快手__NS_sig3数据分析
python
Python数据分析与机器学习1 小时前
《基于深度学习的高分卫星图像配准模型研发与应用》开题报告
图像处理·人工智能·python·深度学习·神经网络·机器学习
程序员总部2 小时前
PyCharm如何有效地添加源与库?
ide·python·pycharm
LCY1332 小时前
django中间件说明
python·中间件·django
蹦蹦跳跳真可爱5892 小时前
Python----数据分析(Pandas四:一维数组Series的统计计算,分组和聚合)
python·数据分析·pandas
南部余额4 小时前
使用python反射,实现pytest读取yaml并发送请求
python·pytest
小白的高手之路4 小时前
如何安装旧版本的Pytorch
人工智能·pytorch·python·深度学习·机器学习·conda
胖哥真不错4 小时前
Python基于Django和协同过滤算法实现电影推荐系统功能丰富版
开发语言·python·django·项目实战·电影推荐系统·协同过滤算法·功能丰富版
weixin_307779135 小时前
Python和Docker实现AWS ECR/ECS上全自动容器化部署网站前端
开发语言·python·云计算·aws