Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

复制代码
pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)

predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
    x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标
    image = Image.open(r"D:\Desktop\tp.png")
    cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像
    output_path = f"output_{num}.jpg"
    cropped_image.save(output_path)  # 保存裁剪后的图像
    num += 1

被检测的图片:

预测主体效果:

如果在原图的基础上查看代码如下:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

相关推荐
别让别人觉得你做不到10 分钟前
Python(1) 做一个随机数的游戏
python
小彭律师1 小时前
人脸识别门禁系统技术文档
python
张小九993 小时前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
zstar-_3 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
苏生要努力3 小时前
第九届御网杯网络安全大赛初赛WP
linux·python·网络安全
于壮士hoho3 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash
蒙奇D索大4 小时前
【人工智能】自然语言编程革命:腾讯云CodeBuddy实战5步搭建客户管理系统,效率飙升90%
人工智能·python·django·云计算·腾讯云
AndrewHZ4 小时前
【Python生活】如何构建一个跌倒检测的算法?
python·算法·生活·可视化分析·陀螺仪·加速度计·跌倒检测
lizz6664 小时前
Python查询ES错误ApiError(406, ‘Content-Type ...is not supported
python·elasticsearch
lqjun08274 小时前
Focal Loss 原理详解及 PyTorch 代码实现
人工智能·pytorch·python