Python使用 YOLO_NAS_S 模型进行目标检测并保存预测到的主体图片

一、前言:

使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片

安装包:

复制代码
pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier

二、步骤:

  1. 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
  2. 下载 YOLO_NAS_S 模型的权重文件,并加载模型
  3. 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
  4. 使用模型进行目标检测,并获取预测结果
  5. 解析预测结果,并保存预测到的主体图片

三、代码:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)

predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
    x1, y1, x2, y2 = bbox[:4]  # 每个预测框的坐标
    image = Image.open(r"D:\Desktop\tp.png")
    cropped_image = image.crop((x1, y1, x2, y2))  # 根据坐标裁剪图像
    output_path = f"output_{num}.jpg"
    cropped_image.save(output_path)  # 保存裁剪后的图像
    num += 1

被检测的图片:

预测主体效果:

如果在原图的基础上查看代码如下:

复制代码
from PIL import Image

import torch
from super_gradients.training import models

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")

结果:

相关推荐
Jackilina_Stone1 小时前
【论文|复现】YOLOFuse:面向多模态目标检测的双流融合框架
人工智能·python·目标检测·计算机视觉·融合
双叶8362 小时前
(Python)文件储存的认识,文件路径(文件储存基础教程)(Windows系统文件路径)(基础教程)
开发语言·windows·python
枫昕柚2 小时前
python
开发语言·python
木头左2 小时前
自动驾驶领域中的Python机器学习
python·机器学习·自动驾驶
Dxy12393102162 小时前
Python Requests-HTML库详解:从入门到实战
开发语言·python·html
seasonsyy2 小时前
2.安装CUDA详细步骤(含安装截图)
python·深度学习·环境配置·cuda
写点什么啦2 小时前
一键修复ipynb,Jupyter Notebook损坏文件
ide·python·jupyter
fishwheel3 小时前
Android:Reverse 实战 part 2 番外 IDA python
android·python·安全
测试19983 小时前
cmake应用:集成gtest进行单元测试
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
淦暴尼3 小时前
银行客户流失预测分析
python·深度学习·算法