一、前言:
使用 YOLO_NAS_S 模型进行目标检测,并保存预测到的主体图片
安装包:
pip install super_gradients
pip install omegaconf
pip install hydra-core
pip install boto3
pip install stringcase
pip install typing-extensions
pip install rapidfuzz
pip install Cython
pip install pycocotools
pip install onnx-simplifier
二、步骤:
- 安装所需的库和框架。确保已经安装了 OpenCV、PyTorch 和 torchvision
- 下载 YOLO_NAS_S 模型的权重文件,并加载模型
- 进行图像预处理。对于每张输入图像,需要将其转换为模型可接受的格式,并进行归一化处理
- 使用模型进行目标检测,并获取预测结果
- 解析预测结果,并保存预测到的主体图片
三、代码:
from PIL import Image
import torch
from super_gradients.training import models
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
predictions = out[0]
# 提取预测框对应的主体图像并保存
num = 1
for bbox in predictions.prediction.bboxes_xyxy:
x1, y1, x2, y2 = bbox[:4] # 每个预测框的坐标
image = Image.open(r"D:\Desktop\tp.png")
cropped_image = image.crop((x1, y1, x2, y2)) # 根据坐标裁剪图像
output_path = f"output_{num}.jpg"
cropped_image.save(output_path) # 保存裁剪后的图像
num += 1
被检测的图片:
预测主体效果:
如果在原图的基础上查看代码如下:
from PIL import Image
import torch
from super_gradients.training import models
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = models.get("yolo_nas_s", pretrained_weights="coco").to(device)
out = model.predict(r"D:\Desktop\tp.png", conf=0.6)
out.save("save_folder_path")
结果: