LSTM Word 语言模型上的(实验)动态量化

LSTM Word 语言模型上的(实验)动态量化

介绍

量化涉及将模型的权重和激活从 float 转换为 int,这可能会导致模型尺寸更小,推断速度更快,而对准确性的影响很小。

在本教程中,我们将最简单的量化形式-动态量化应用于基于 LSTM 的下一个单词预测模型,紧紧遵循 PyTorch 示例中的单词语言模型

复制代码
# imports
import os
from io import open
import time

import torch
import torch.nn as nn
import torch.nn.functional as F

1.定义模型

在这里,我们根据词语言模型示例中的模型定义 LSTM 模型体系结构。

复制代码
class LSTMModel(nn.Module):
    """Container module with an encoder, a recurrent module, and a decoder."""

    def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5):
        super(LSTMModel, self).__init__()
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(ntoken, ninp)
        self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout)
        self.decoder = nn.Linear(nhid, ntoken)

        self.init_weights()

        self.nhid = nhid
        self.nlayers = nlayers

    def init_weights(self):
        initrange = 0.1
        self.encoder.weight.data.uniform_(-initrange, initrange)
        self.decoder.bias.data.zero_()
        self.decoder.weight.data.uniform_(-initrange, initrange)

    def forward(self, input, hidden):
        emb = self.drop(self.encoder(input))
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        decoded = self.decoder(output)
        return decoded, hidden

    def init_hidden(self, bsz):
        weight = next(self.parameters())
        return (weight.new_zeros(self.nlayers, bsz, self.nhid),
                weight.new_zeros(self.nlayers, bsz, self.nhid))

2.加载文本数据

接下来,我们再次根据单词模型示例对预处理,将 Wikitext-2 数据集加载到<cite>语料库</cite>中。

复制代码
class Dictionary(object):
    def __init__(self):
        self.word2idx = {}
        self.idx2word = []

    def add_word(self, word):
        if word not in self.word2idx:
            self.idx2word.append(word)
            self.word2idx[word] = len(self.idx2word) - 1
        return self.word2idx[word]

    def __len__(self):
        return len(self.idx2word)

class Corpus(object):
    def __init__(self, path):
        self.dictionary = Dictionary()
        self.train = self.tokenize(os.path.join(path, 'train.txt'))
        self.valid = self.tokenize(os.path.join(path, 'valid.txt'))
        self.test = self.tokenize(os.path.join(path, 'test.txt'))

    def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, 'r', encoding="utf8") as f:
            for line in f:
                words = line.split() + ['<eos>']
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, 'r', encoding="utf8") as f:
            idss = []
            for line in f:
                words = line.split() + ['<eos>']
                ids = []
                for word in words:
                    ids.append(self.dictionary.word2idx[word])
                idss.append(torch.tensor(ids).type(torch.int64))
            ids = torch.cat(idss)

        return ids

model_data_filepath = 'data/'

corpus = Corpus(model_data_filepath + 'wikitext-2')

3.加载预训练的模型

这是有关动态量化的教程,动态量化是在训练模型后应用的一种量化技术。 因此,我们只需将一些预先训练的权重加载到此模型架构中即可; 这些权重是通过使用单词语言模型示例中的默认设置训练五个纪元而获得的。

复制代码
ntokens = len(corpus.dictionary)

model = LSTMModel(
    ntoken = ntokens,
    ninp = 512,
    nhid = 256,
    nlayers = 5,
)

model.load_state_dict(
    torch.load(
        model_data_filepath + 'word_language_model_quantize.pth',
        map_location=torch.device('cpu')
        )
    )

model.eval()
print(model)

出:

复制代码
LSTMModel(
  (drop): Dropout(p=0.5, inplace=False)
  (encoder): Embedding(33278, 512)
  (rnn): LSTM(512, 256, num_layers=5, dropout=0.5)
  (decoder): Linear(in_features=256, out_features=33278, bias=True)
)

现在,我们生成一些文本以确保预先训练的模型能够正常工作-与以前类似,我们在此处遵循

复制代码
input_ = torch.randint(ntokens, (1, 1), dtype=torch.long)
hidden = model.init_hidden(1)
temperature = 1.0
num_words = 1000

with open(model_data_filepath + 'out.txt', 'w') as outf:
    with torch.no_grad():  # no tracking history
        for i in range(num_words):
            output, hidden = model(input_, hidden)
            word_weights = output.squeeze().div(temperature).exp().cpu()
            word_idx = torch.multinomial(word_weights, 1)[0]
            input_.fill_(word_idx)

            word = corpus.dictionary.idx2word[word_idx]

            outf.write(str(word.encode('utf-8')) + ('\n' if i % 20 == 19 else ' '))

            if i % 100 == 0:
                print('| Generated {}/{} words'.format(i, 1000))

with open(model_data_filepath + 'out.txt', 'r') as outf:
    all_output = outf.read()
    print(all_output)

Out:

复制代码
| Generated 0/1000 words
| Generated 100/1000 words
| Generated 200/1000 words
| Generated 300/1000 words
| Generated 400/1000 words
| Generated 500/1000 words
| Generated 600/1000 words
| Generated 700/1000 words
| Generated 800/1000 words
| Generated 900/1000 words
b'and' b'O' b'\xe2\x80\x99' b'Gacy' b',' b'and' b'then' b'defined' b'that' b'next' b'novel' b'succeeded' b'large' b'property' b',' b'so' b'neither' b'number' b'is' b'currently'
b'a' b'identical' b'planet' b'by' b'stiff' b'culture' b'.' b'Mosley' b'may' b'settle' b'in' b'non' b'@-@' b'bands' b'for' b'the' b'beginning' b'of' b'its' b'home'
b'stations' b',' b'being' b'also' b'in' b'charge' b'for' b'two' b'other' b'@-@' b'month' b'ceremonies' b'.' b'The' b'first' b'Star' b'Overseas' b'took' b'to' b'have'
b'met' b'its' b'leadership' b'for' b'investigation' b'such' b'as' b'Discovered' b'lbw' b',' b'club' b',' b'<unk>' b',' b'<unk>' b',' b'or' b'Crac' b"'Malley" b','
b'although' b'with' b'the' b'other' b'victory' b',' b'assumes' b'it' b'.' b'(' b'not' b'containment' b'to' b'a' b'recent' b'problem' b')' b'.' b'His' b'traditional'
b'scheme' b'process' b'is' b'proceeded' b'outdoor' b'in' b'overweight' b'clusters' b';' b'God' b'Davis' b'was' b'interested' b'on' b'her' b'right' b'touring' b',' b'although' b'they'
b'had' b'previously' b'previously' b'risen' b'near' b'eclipse' b'in' b'his' b'work' b'by' b'the' b'latter' b'@-@' b'perspective' b'.' b'During' b'the' b'release' b'of' b'Bell'
b',' b'the' b'first' b'promotional' b'mention' b'included' b'a' b'Magnetic' b'seam' b'was' b'put' b'into' b'Shakespeare' b"'s" b'Special' b'Company' b'is' b'katra' b'than' b'chops'
b'@-@' b'up' b'history' b'for' b'frets' b'of' b'actions' b'.' b'<eos>' b'Until' b'arrival' b',' b'Griffin' b'wrote' b'that' b'a' b'"' b'sense' b'"' b'included'
b'especially' b'declining' b'individual' b'forces' b',' b'though' b'are' b'stronger' b'<unk>' b'.' b'According' b'to' b'lessen' b'very' b'role' b',' b'Ceres' b'believed' b'he' b'each'
b'conflicted' b'pump' b'fight' b'follows' b'the' b'malignant' b'polynomial' b'to' b'make' b'Albani' b'.' b'The' b'nobility' b'found' b'a' b'spinners' b'from' b'a' b'special' b'to'
b'vertical' b'@-@' b'term' b'crimes' b',' b'and' b'the' b'Neapolitan' b'apparent' b'<unk>' b'show' b'forcing' b'no' b'of' b'the' b'worst' b'traditions' b'of' b'tallest' b'<unk>'
b'teacher' b'+' b'green' b'crushing' b',' b'with' b'4' b'%' b',' b'and' b'560' b'doctrines' b',' b'with' b'other' b'Asian' b'assistance' b'<unk>' b'.' b'The'
b'game' b'is' b'unadorned' b',' b'especially' b'or' b'steadily' b'favoured' b'according' b'to' b'its' b'inside' b',' b'leading' b'to' b'the' b'removal' b'of' b'gauges' b'.'
b'vanishing' b',' b'a' b'jagged' b'race' b'rested' b'with' b'be' b'rich' b'if' b'these' b'legislation' b'remained' b'together' b'.' b'The' b'anthology' b'and' b'initially' b'regularly'
b'Cases' b'Cererian' b'and' b'acknowledge' b'individual' b'being' b'poured' b'with' b'the' b'Chicago' b'melee' b'.' b'Europium' b',' b'<unk>' b',' b'and' b'Lars' b'life' b'for'
b'electron' b'plumage' b',' b'will' b'deprive' b'themselves' b'.' b'The' b'<unk>' b'gryllotalpa' b'behave' b'have' b'Emerald' b'doubt' b'.' b'When' b'limited' b'cubs' b'are' b'rather'
b'attempting' b'to' b'address' b'.' b'Two' b'birds' b'as' b'being' b'also' b'<unk>' b',' b'such' b'as' b'"' b'<unk>' b'"' b',' b'and' b'possessing' b'criminal'
b'spots' b',' b'lambskin' b'ponderosa' b'mosses' b',' b'which' b'might' b'seek' b'to' b'begin' b'less' b'different' b'delineated' b'techniques' b'.' b'Known' b',' b'on' b'the'
b'ground' b',' b'and' b'only' b'cooler' b',' b'first' b'on' b'other' b'females' b'factory' b'in' b'mathematics' b'.' b'Pilgrim' b'alone' b'has' b'a' b'critical' b'substance'
b',' b'probably' b'in' b'line' b'.' b'He' b'used' b'a' b'<unk>' b',' b'with' b'the' b'resin' b'being' b'transported' b'to' b'the' b'12th' b'island' b'during'
b'the' b'year' b'of' b'a' b'mixture' b'show' b'that' b'it' b'is' b'serving' b';' b'they' b'are' b'headed' b'by' b'prone' b'too' b'species' b',' b'rather'
b'than' b'the' b'risk' b'of' b'carbon' b'.' b'In' b'all' b'other' b'typical' b',' b'faith' b'consist' b'of' b'<unk>' b'whereas' b'<unk>' b'when' b'quotes' b'they'
b'Abrams' b'restructuring' b'vessels' b'.' b'It' b'also' b'emerged' b'even' b'when' b'any' b'lack' b'of' b'birds' b'has' b'wide' b'pinkish' b'structures' b',' b'directing' b'a'
b'chelicerae' b'of' b'amputated' b'elementary' b',' b'only' b'they' b'on' b'objects' b'.' b'A' b'female' b'and' b'a' b'female' b'Leisler' b'@-@' b'shaped' b'image' b'for'
b'51' b'@.@' b'5' b'm' b'(' b'5' b'lb' b')' b'Frenchman' b'2' b'at' b'sea' b'times' b'is' b'approximately' b'2' b'years' b'ago' b',' b'particularly'
b'behind' b'reducing' b'Trujillo' b"'s" b'and' b'food' b'specific' b'spores' b'.' b'Males' b'fibrous' b'females' b'can' b'be' b'severely' b'gregarious' b'.' b'The' b'same' b'brood'
b'behind' b'100' b'minutes' b'after' b'it' b'is' b'estimated' b'by' b'damaging' b'the' b'nest' b'base' b',' b'with' b'some' b'other' b'rare' b'birds' b'and' b'behavior'
b',' b'no' b'transport' b'and' b'Duty' b'demand' b'.' b'Two' b'rare' b'chicks' b'have' b'from' b'feed' b'engage' b'to' b'come' b'with' b'some' b'part' b'of'
b'nesting' b'.' b'The' b'1808' b'to' b'be' b'reduced' b'to' b'Scots' b'and' b'fine' b'stones' b'.' b'There' b'they' b'also' b'purple' b'limitations' b'of' b'certain'
b'skin' b'material' b'usually' b'move' b'during' b'somewhat' b'.' b'A' b'mothers' b'of' b'external' b'take' b'from' b'poaching' b',' b'typically' b'have' b'people' b'processes' b'and'
b'toll' b';' b'while' b'bird' b'plumage' b'differs' b'to' b'Fight' b',' b'they' b'may' b'be' b'open' b'after' b'<unk>' b',' b'thus' b'rarely' b'their' b'<unk>'
b'for' b'a' b'emotional' b'circle' b'.' b'Rough' b'Dahlan' b'probably' b'suggested' b'how' b'they' b'impose' b'their' b'cross' b'of' b'relapse' b'where' b'they' b'changed' b'.'
b'They' b'popularisation' b'them' b'of' b'their' b'<unk>' b',' b'charming' b'by' b'limited' b'or' b'Palestinians' b'the' b'<unk>' b'<unk>' b'.' b'Traffic' b'of' b'areas' b'headed'
b',' b'and' b'their' b'push' b'will' b'articulate' b'.' b'<eos>' b'<unk>' b'would' b'be' b'criticized' b'by' b'protein' b'rice' b',' b'particularly' b'often' b'rather' b'of'
b'the' b'cellular' b'extent' b'.' b'They' b'could' b'overlap' b'forward' b',' b'and' b'there' b'are' b'no' b'governing' b'land' b',' b'they' b'do' b'not' b'find'
b'it' b'.' b'In' b'one' b'place' b',' b'reddish' b'kakapo' b'(' b'kakapo' b'<unk>' b')' b'might' b'be' b'performed' b'that' b'conduct' b',' b'stadia' b','
b'gene' b'or' b'air' b',' b'noise' b',' b'and' b'offensive' b'or' b'skin' b',' b'which' b'may' b'be' b'commercially' b'organized' b'strong' b'method' b'.' b'In'
b'changing' b',' b'Chen' b'and' b'eukaryotes' b'were' b'Membrane' b'spiders' b'in' b'larger' b'growth' b',' b'by' b'some' b'regions' b'.' b'If' b'up' b'about' b'5'
b'%' b'of' b'the' b'males' b',' b'there' b'are' b'displays' b'that' b'shift' b'the' b'bird' b'inclination' b'after' b'supreme' b'<unk>' b'to' b'move' b'outside' b'tests'
b'.' b'The' b'aim' b'of' b'Mouquet' b'Sites' b'is' b'faster' b'as' b'an' b'easy' b'asteroid' b',' b'with' b'ocean' b'or' b'grey' b',' b'albeit' b','
b'as' b'they' b'they' b'CBs' b',' b'and' b'do' b'not' b'be' b'performed' b',' b'greatly' b'on' b'other' b'insects' b',' b'they' b'can' b'write' b'chromosomes'
b',' b'and' b'planners' b',' b'galericulata' b'should' b'be' b'a' b'bird' b'.' b'Also' b'on' b'a' b'holodeck' b'they' b'were' b'divine' b'out' b'of' b'bare'
b'handwriting' b'.' b'Unlike' b'this' b',' b'they' b'makes' b'only' b'anything' b'a' b'variation' b'of' b'skin' b'skeletons' b'further' b'.' b'They' b'have' b'to' b'be'
b'able' b'under' b'their' b'herding' b'tree' b',' b'or' b'dart' b'.' b'When' b'many' b'hypothesis' b'(' b'plant' b',' b'they' b'were' b'@-@' b'looped' b'aged'
b'play' b')' b'is' b'very' b'clear' b'as' b'very' b'on' b'comparison' b'.' b'<eos>' b'Furthermore' b',' b'Wikimania' b'decorations' b'@-@' b'sponsored' b'naming' b'hydrogen' b'when'
b'the' b'kakapo' b'commenced' b',' b'they' b'are' b'slowly' b'on' b'heavy' b'isolation' b'.' b'Sometimes' b'that' b'Larssen' b'leave' b'gently' b',' b'they' b'usually' b'made'
b'short' b'care' b'of' b'feral' b'or' b'any' b'dual' b'species' b'.' b'<eos>' b'Further' b'males' b'that' b'outfitting' b',' b'when' b'there' b'are' b'two' b'envelope'
b'shorter' b'flocks' b'to' b'be' b'males' b'ideally' b'they' b'are' b'highly' b'emission' b'.' b'<eos>' b'As' b'of' b'danger' b',' b'taking' b'in' b'one' b'of'
b'the' b'other' b'surviving' b'structure' b'of' b'Ceres' b'can' b'be' b'rebuffed' b'to' b'be' b'caused' b'by' b'any' b'combination' b'of' b'food' b'or' b'modified' b'its'

它不是 GPT-2,但看起来该模型已开始学习语言结构!

我们几乎准备好演示动态量化。 我们只需要定义一些辅助函数:

复制代码
bptt = 25
criterion = nn.CrossEntropyLoss()
eval_batch_size = 1

# create test data set
def batchify(data, bsz):
    # Work out how cleanly we can divide the dataset into bsz parts.
    nbatch = data.size(0) // bsz
    # Trim off any extra elements that wouldn't cleanly fit (remainders).
    data = data.narrow(0, 0, nbatch * bsz)
    # Evenly divide the data across the bsz batches.
    return data.view(bsz, -1).t().contiguous()

test_data = batchify(corpus.test, eval_batch_size)

# Evaluation functions
def get_batch(source, i):
    seq_len = min(bptt, len(source) - 1 - i)
    data = source[i:i+seq_len]
    target = source[i+1:i+1+seq_len].view(-1)
    return data, target

def repackage_hidden(h):
  """Wraps hidden states in new Tensors, to detach them from their history."""

  if isinstance(h, torch.Tensor):
      return h.detach()
  else:
      return tuple(repackage_hidden(v) for v in h)

def evaluate(model_, data_source):
    # Turn on evaluation mode which disables dropout.
    model_.eval()
    total_loss = 0.
    hidden = model_.init_hidden(eval_batch_size)
    with torch.no_grad():
        for i in range(0, data_source.size(0) - 1, bptt):
            data, targets = get_batch(data_source, i)
            output, hidden = model_(data, hidden)
            hidden = repackage_hidden(hidden)
            output_flat = output.view(-1, ntokens)
            total_loss += len(data) * criterion(output_flat, targets).item()
    return total_loss / (len(data_source) - 1)

4.测试动态量化

最后,我们可以在模型上调用torch.quantization.quantize_dynamic! 特别,

  • 我们指定我们要对模型中的nn.LSTMnn.Linear模块进行量化

  • 我们指定希望将权重转换为int8

    import torch.quantization

    quantized_model = torch.quantization.quantize_dynamic(
    model, {nn.LSTM, nn.Linear}, dtype=torch.qint8
    )
    print(quantized_model)

Out:

复制代码
LSTMModel(
  (drop): Dropout(p=0.5, inplace=False)
  (encoder): Embedding(33278, 512)
  (rnn): DynamicQuantizedLSTM(
    512, 256, num_layers=5, dropout=0.5
    (_all_weight_values): ModuleList(
      (0): PackedParameter()
      (1): PackedParameter()
      (2): PackedParameter()
      (3): PackedParameter()
      (4): PackedParameter()
      (5): PackedParameter()
      (6): PackedParameter()
      (7): PackedParameter()
      (8): PackedParameter()
      (9): PackedParameter()
    )
  )
  (decoder): DynamicQuantizedLinear(
    in_features=256, out_features=33278
    (_packed_params): LinearPackedParams()
  )
)

该模型看起来相同; 这对我们有什么好处? 首先,我们看到模型尺寸显着减小:

复制代码
def print_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    print('Size (MB):', os.path.getsize("temp.p")/1e6)
    os.remove('temp.p')

print_size_of_model(model)
print_size_of_model(quantized_model)

Out:

复制代码
Size (MB): 113.941574
Size (MB): 76.807204

其次,我们看到了更快的推断时间,而评估损失没有差异:

注意:由于量化模型运行单线程,因此用于单线程比较的线程数为 1。

复制代码
torch.set_num_threads(1)

def time_model_evaluation(model, test_data):
    s = time.time()
    loss = evaluate(model, test_data)
    elapsed = time.time() - s
    print('''loss: {0:.3f}\nelapsed time (seconds): {1:.1f}'''.format(loss, elapsed))

time_model_evaluation(model, test_data)
time_model_evaluation(quantized_model, test_data)

Out:

复制代码
loss: 5.167
elapsed time (seconds): 233.9
loss: 5.168
elapsed time (seconds): 164.9

在 MacBook Pro 上本地运行此程序,无需进行量化,推理大约需要 200 秒,而进行量化则只需大约 100 秒。

结论

动态量化可能是减小模型大小的简单方法,而对精度的影响有限。

谢谢阅读! 与往常一样,我们欢迎您提供任何反馈,因此,如果有任何问题,请在此处创建一个问题

相关推荐
zhengfei6112 小时前
【开源渗透工具】——一个开源的多模态大型语言模型红队框架OpenRT
人工智能·语言模型·开源
Dev7z3 小时前
基于LSTM与集成学习融合的光伏发电功率预测系统设计与实现(MATLAB实现)
lstm·集成学习融合·光伏发电功率预测
a3158238063 小时前
基于大语言模型的新闻判断技术
人工智能·语言模型·自然语言处理
youcans_4 小时前
【DeepSeek论文精读】17. 通过可扩展查找的条件记忆:大语言模型稀疏化的新维度
论文阅读·人工智能·语言模型·长短时记忆网络·稀疏
dehuisun7 小时前
大模型与向量模型、向量库的关联与应用
语言模型
DisonTangor7 小时前
【DeepSeek拥抱开源】通过可扩展查找实现的条件记忆:大型语言模型稀疏性的新维度
人工智能·语言模型·自然语言处理
音视频开发_AIZ10 小时前
比OpenAI语音模型落地更快!基于RTC SDK搭建语音实时互动智能体教程
人工智能·语言模型·自然语言处理·实时互动·语音识别·实时音视频
CodeCaptain13 小时前
dify大语言模型在编排中的作用
ai·语言模型·dify
前端程序猿之路13 小时前
30天大模型学习之Day3:高级 Prompt 工程
人工智能·python·学习·语言模型·大模型·prompt·ai编程
且去填词21 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek