【4】Transformers快速入门:自然语言模型 vs 统计语言模型


一句话关系总结

统计语言模型 = 自然语言模型的"数学基础"

(就像加减乘除是数学的基础,统计模型是AI学说话的基础工具)


区别对比表(小白版)

维度 统计语言模型 自然语言模型
本质 用数学公式算句子概率 用神经网络模仿人脑理解语言
工作方式 数词频、算概率(像计算器) 学习词之间的关系(像人脑联想)
代表技术 N-gram(数前N个词的概率) Word2Vec、BERT、GPT(深度学习)
能力上限 只能处理短句,不懂上下文含义 能理解长文、多义词、甚至写小说
举个栗子🌰 判断"我吃苹果"比"苹果吃我"概率高 知道"苹果"在"吃"后是水果,在"买"后是手机

关系详解(父子进化史)

1. 统计语言模型:爷爷辈的数学派
  • 核心任务 :计算一句话 "像不像人话"
    (比如"狗追猫"概率高 ✅,"猫追狗"概率低 ❌)
  • 怎么算
    N-gram 数词频(例:统计100万句话里"狗追"后出现"猫"的次数)
  • 缺点
    • 像金鱼记忆,只能看附近2-3个词
    • 不懂"狗追猫"和"猫被狗追"其实是同一个意思
2. 自然语言模型:孙辈的学霸派
  • 核心技术神经网络(模拟人脑的算法)
  • 升级点
    • 词向量:给每个词发"智能身份证"(例:苹果 = [0.3, -2.1, 5.4])
    • 上下文理解
      • Word2Vec 看周围词定含义(静态)
      • BERT/GPT 看整句话动态调含义(比如"苹果"在不同句子中向量不同)
  • 超能力
    • 写文章、编代码、陪你聊天(ChatGPT)
    • 理解"我上周买的苹果坏了"指手机还是水果(靠上下文推理)

关键进化里程碑

复制代码
统计模型(数概率)  
↓  
Word2Vec(给词发身份证)  
↓  
BERT/GPT(动态身份证 + 整段话联想)  

越新的模型越像真人

死记硬背学会举一反三


举个栗子🌰 秒懂区别

任务:判断"银行"指金融机构还是河边

模型类型 处理方式 结果
统计语言模型 数"银行"和"存款"一起出现的概率 只能猜一个意思
自然语言模型 看整句:"我去银行 存钱" → 金融机构 "河边的银行很滑" → 河边 动态理解正确 ✅

总结一句话

  • 统计语言模型 :AI学说话的 1.0版本(数学公式派)
  • 自然语言模型 :AI学说话的 3.0版本 (神经网络学霸派),包含并超越了统计模型的能力!

💡 小白记忆法

统计模型 = 算盘(只能加减)

自然语言模型 = 智能手机(能聊天打游戏)
现在你听到的ChatGPT,全是自然语言模型! 🚀

相关推荐
FlagOS智算系统软件栈2 小时前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
加油吧zkf4 小时前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
koo3645 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波5 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客6 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室6 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭6 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
牛客企业服务6 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer6 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl55666 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技