数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成

目录

生成效果






基本描述

数据生成 | MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成。

生成对抗网络(Generative Adversarial Networks,简称GAN)是一种深度学习模型,由生成器网络(Generator Network)和判别器网络(Discriminator Network)组成。

GAN的目标是训练一个生成器网络,能够生成与真实数据类似的新样本。生成器网络接收一个随机噪声向量作为输入,并通过逐渐调整内部参数来生成样本。而判别器网络则负责区分生成器生成的样本和真实数据样本,它的目标是尽可能准确地判断输入样本的真假。

GAN的训练过程是一个博弈过程,生成器和判别器相互竞争、相互博弈。在每一轮训练中,生成器生成一批样本,判别器评估这些样本的真实性,并给出判别结果。生成器根据判别器的反馈来调整自己的参数,以使生成样本更加逼真。判别器也根据生成器生成的样本来调整自己的参数,以提高真实样本和生成样本的区分能力。

通过反复迭代训练生成器和判别器,GAN可以逐渐学习到生成与真实数据相似的样本。GAN在图像生成、图像修复、图像转换等任务中具有广泛的应用,也是深度学习领域的重要研究方向之一。

GAN的训练过程相对复杂,需要合适的网络结构设计、损失函数定义以及训练策略等。此外,GAN的训练也可能面临一些挑战,例如训练不稳定、模式崩溃等问题,需要进行合理的调参和技巧处理。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现GAN生成对抗网络结合SVM支持向量机的数据生成
clike 复制代码
                                  % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 1000
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过800次训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
Macre Aegir Thrym2 天前
MINIST——SVM
算法·机器学习·支持向量机
AI新兵3 天前
AI大事记10:从对抗到创造——生成对抗网络 (GANs)
人工智能·神经网络·生成对抗网络
大饼酥6 天前
吴恩达机器学习笔记(10)—支持向量机
机器学习·支持向量机·吴恩达·高斯核函数
IT古董7 天前
【第五章:计算机视觉-项目实战之生成对抗网络实战】2.基于SRGAN的图像超分辨率实战-(2)实战1:DCGAN模型搭建
人工智能·生成对抗网络·计算机视觉
ASIAZXO7 天前
机器学习——SVM支持向量机详解
人工智能·机器学习·支持向量机
jerryinwuhan7 天前
Python数据挖掘之基础分类模型_支持向量机(SVM)
python·支持向量机·数据挖掘
_Meilinger_8 天前
碎片笔记|生成模型原理解读:AutoEncoder、GAN 与扩散模型图像生成机制
人工智能·生成对抗网络·gan·扩散模型·图像生成·diffusion model
小李独爱秋8 天前
机器学习中的聚类理论与K-means算法详解
人工智能·算法·机器学习·支持向量机·kmeans·聚类
IT古董9 天前
【第五章:计算机视觉-项目实战之生成对抗网络实战】1.对抗生成网络原理-(1)对抗生成网络算法基础知识:基本思想、GAN的基本架构、应用场景、标注格式
人工智能·生成对抗网络·计算机视觉
曾经的三心草9 天前
Python14-SVM⽀持向量机
人工智能·机器学习·支持向量机