数据结构--5.2马踏棋盘算法(骑士周游问题)

题目渊源:

马踏棋盘问题(又称骑士周游问题或骑士漫游问题)是算法设计的经典问题之一。

题目要求:

国际象棋的棋盘为8*8的方格棋盘,现将"马"放在任意指定的方格中,按照"马"走棋的规则将"马"进行移动。要求每个方格只能进入一次,最终使得"马"走遍棋盘64个方格。

cpp 复制代码
#include <stdio.h>
#include <time.h>

#define X 8
#define Y 8

int chess[X][Y];

//找到基于(x,y)位置的下一个可走的位置 
int nextxy(int *x,int *y,int count)
{
	switch(count)
	{
		case 0:
			if(*x+2<=X-1 && *y-1>=0 && chess[*x+2][*y-1]==0)
			{
				*y+=2;
				*y-=1;
				return 1;
			}
			break;
		
		case 1:
			if(*x+2<=X-1 && *y+1<=Y-1 && chess[*x+2][*y+1]==0 )
			{
				*x+=2;
				*y+=1;
				return 1;
			}
			break;
		
		case 2:
			if(*x+1<=X-1 && *y-2>=0 && chess[*x+1][*y-2]==0 )
			{
				*x=*x+1;
				*y=*y-2;
				return 1;
			}
			break;
		
		case 3:
			if(*x+1<=X-1 && *y+2<=Y-1 && chess[*x+1][*y+2]==0)
			{
				*x = *x+1;
				*y= *y+2;
				return 1;
			}
			break;
		
		case 4:
			if(*x-2>=0  && *y-1>=0 && chess[*x-2][*y-1]==0)
			{
				*x= *x-2;
				*y= *y+1;
				return 1;
			}
			break;
		
		case 5:
			if(*x-2>=0 && *y+1<=Y-1 && chess[*x-2][*y+1]==0 )
			{
				*x= *x-2;
				*y = *y+1;
				return 1;
			}
			break;
		
		case 6:
			if(*x-1>=0 && *y-2>=0 && chess[*x-1][*y-2]==0)
			{
				*x = *x - 1;
				*y = *y - 2;
				return 1;
			}
			break;
		
		case 7:
			if(*x-1>=0 && *y+2<=Y-1 && chess[*x-1][*y+2]==0)
			{
				*x = *x -1;
				*y = *y +2;
				return 1;
			}
			break;
			
		default:
			break;
	 } 
	 return 0;
} 


void print()
{
	int i,j;
	for(i=0;i<X;i++)
	{
		for(j=0;j<Y;j++)
		{
			printf("%2d\t",chess[i][j]);
		}
		printf("\n");
	}
	printf("\n");
}

//深度优先遍历棋盘
//(x,y)为位置坐标
//tag是标记变量
int TravelChessBoard(int x,int y,int tag)
{
	int x1= x,y1=y,count =0,flag =0;
	chess[x][y] = tag;
	if(x*Y == tag)
	{
		//打印棋盘
		print();
		return 1; 
	}
	//找到马的下一个可走的坐标(x1,y1)
	flag = nextxy(&x1,&y1,count);
	while(0==flag && count<7)
	{
		count++;
	}
	while(flag)
	{
		if(TravelChessBoard(x1,y1,tag+1))
		{
			return 1;
		}
		//出现意外,找到马的下一步可走坐标(x1,y1) 
		x1=x;
		y1=y;
		count++;
		flag = nextxy(&x1,&y1,count);
		while(0==flag && count < 7)
		{
			count++;
			flag = nextxy(&x1,&y1,count);
		}
	 } 
	 if(0 == flag)
	 {
	 	chess[x][y] =0;
	  } 
	return 0;
} 


int main()
{
	int i,j;
	clock_t start,finish;
	start = clock();
	for(i=0;i<X;i++)
	{
		for(j=0;j<Y;j++)
		{
			chess[i][j]=0;
		}
	}
	if(TravelChessBoard(2,0,1))
	{
		printf("抱歉,马踏棋盘失败!\n");
	}
	finish = clock();
	printf("\n本次计算一共耗时:%f秒\n\n",(double)(finish - start)/CLOCKS_PER_SEC);
	
	return 0;
}
相关推荐
小猿_007 分钟前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
熊文豪2 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
siy23335 小时前
[c语言日寄]结构体的使用及其拓展
c语言·开发语言·笔记·学习·算法
吴秋霖5 小时前
最新百应abogus纯算还原流程分析
算法·abogus
灶龙6 小时前
浅谈 PID 控制算法
c++·算法
菜还不练就废了6 小时前
蓝桥杯算法日常|c\c++常用竞赛函数总结备用
c++·算法·蓝桥杯
金色旭光6 小时前
目标检测高频评价指标的计算过程
算法·yolo
he101016 小时前
1/20赛后总结
算法·深度优先·启发式算法·广度优先·宽度优先
Kent_J_Truman6 小时前
【回忆迷宫——处理方法+DFS】
算法
paradoxjun6 小时前
落地级分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果
人工智能·深度学习·算法·计算机视觉·分类