图/超图拉普拉斯分解 Graph/Hypergraph Laplacian eigendecomposition
- 一、图拉普拉斯特征分解
-
- [1. 数学公式](#1. 数学公式)
- [2. 参考代码](#2. 参考代码)
- 二、超图拉普拉斯特征分解
-
- [1. 数学公式](#1. 数学公式)
- [2. 参考代码](#2. 参考代码)
大家好,还是之前的风格,简单粗暴,直接开干!
一、图拉普拉斯特征分解
1. 数学公式
直接上公式,下边公式是图的归一化 拉普拉斯特征分解公式:
Δ = I − D − 1 2 A D − 1 2 = U T Λ U \Delta = I-D^{-\frac{1}{2}}AD^{-\frac{1}{2}} = U^{T}\Lambda U Δ=I−D−21AD−21=UTΛU
各参数的含义是,给定一个图G,假如它有n个节点和m个边:
-
Δ \Delta Δ :拉普拉斯特征矩阵,我们要先计算出这个矩阵,才方便进行特征分解, 矩阵shape是 n × n n\times n n×n
-
I I I:单位矩阵, 矩阵shape是 n × n n\times n n×n
-
D D D:节点度矩阵,矩阵shape是 n × n n\times n n×n
-
A A A :邻接矩阵,矩阵shape是 n × n n\times n n×n
-
U U U:特征向量, 矩阵shape是 n × n n\times n n×n,用代码获取的一般是按照对应特征值从小到大的顺序排列的,每一行对应每个节点的特征值,每一列对应一个特征值。对应特征值小的特征向量包含了更多图整体的结构信息,对应特征值大的特征向量包含了更多这个节点附近的局部信息。
-
Λ \Lambda Λ:特征值, 矩阵shape是 1 × n 1\times n 1×n,一般从函数获得后都是自动排好序的,从小到大
2. 参考代码
参考代码 Github
下边的代码是我加了一些个人注释的,便于理解:
python
import torch
import torch.utils.data
import numpy as np
def eig(sym_mat):
# 特征分解函数
# (sorted) eigenvectors with numpy
EigVal, EigVec = np.linalg.eigh(sym_mat) # 特征分解函数,输入图邻接矩阵A,返回特征值和特征向量
# for eigval, take abs because numpy sometimes computes the first eigenvalue approaching 0 from the negative
eigvec = torch.from_numpy(EigVec).float() # [N, N (channels)] # 转一下type,无伤大雅
eigval = torch.from_numpy(np.sort(np.abs(np.real(EigVal)))).float() # [N (channels),] #其实分解函数返回的时候就已经是排过序的了
return eigvec, eigval # [N, N (channels)] [N (channels),]
def lap_eig(dense_adj, number_of_nodes, in_degree):
"""
拉普拉斯特征矩阵函数
Graph positional encoding v/ Laplacian eigenvectors
https://github.com/DevinKreuzer/SAN/blob/main/data/molecules.py
"""
dense_adj = dense_adj.detach().float().numpy() # 邻接矩阵
# 节点入度,这里in_degree输入的是每个节点的入度,现在还是一个一维的向量
# 大概长这样:[2, 1, 4, 2, ..., 3, 3],长度就是number_of_nodes,对于无向图来说也是出度矩阵
in_degree = in_degree.detach().float().numpy()
# Laplacian
A = dense_adj # 邻接矩阵
N = np.diag(in_degree.clip(1) ** -0.5) # diag就是把 1xn 的向量转为 nxn 的矩阵
L = np.eye(number_of_nodes) - N @ A @ N #这就是上文说的计算拉普拉斯特征矩阵的公式
eigvec, eigval = eig(L) # 上边那个特征分解函数
return eigvec, eigval # [N, N (channels)] [N (channels),]
二、超图拉普拉斯特征分解
1. 数学公式
下边公式是超图的归一化 拉普拉斯特征分解公式:
L = I − D v − 1 2 H W D e − 1 H T D v − 1 2 = U T Λ U L=I-D_{v}^{-\frac{1}{2}}HWD_{e}^{-1}H^{T}D_{v}^{-\frac{1}{2}}= U^{T}\Lambda U L=I−Dv−21HWDe−1HTDv−21=UTΛU
各参数的含义是,给定一个超图G,假如它有n个节点和m个边:
-
L L L :拉超图普拉斯特征矩阵,我们要先计算出这个矩阵,才方便进行特征分解,矩阵shape是 n × n n \times n n×n
-
I I I:单位矩阵, 矩阵shape是 n × n n \times n n×n
-
D v D_{v} Dv:节点度矩阵,矩阵shape是 n × n n \times n n×n
-
D e D_{e} De:超边度矩阵,矩阵shape是 m × m m \times m m×m
-
H H H :关联矩阵,矩阵shape是 n × m n \times m n×m
-
W W W:包含超边权重的对角矩阵,如果没有明确给出超边权重矩阵,一般超边的权重矩阵就按超边的度矩阵算,矩阵shape是 m × m m \times m m×m
-
U U U:特征向量, 矩阵shape是 n × n n \times n n×n
-
Λ \Lambda Λ:特征值, 矩阵shape是 1 × n 1\times n 1×n
2. 参考代码
参考代码 Github
这是我自己写的参考代码,由于接收的数据不太理想,所以代码中可能含有除公式外一些额外的东西:
python
import numpy as np
def getEigvec(HT):
H, Dv, De, W = getHypergraph(HT)
eigval, eigvec = eig(H, Dv, De, W)
return eigval, eigvec
def getHypergraph(HT):
"""
This function aims to convert a graph to a hypergraph.
graph:
HT: a hypergraph incidence matrix, shape is [num_hyperedges, num_hypernodes], contains 0 and 1.
return Hypergraph:
H: a hypergraph incidence matrix, shape is [num_hypernodes, num_hyperedges], contains 0 and 1.
Dv: node degree matrix --> [num_nodes, num_nodes]
De: hyperedge degree matrix --> [hyperedge_num, hyperedge_num]
W: hyperedge weight matrix --> [hyperedge_num, hyperedge_num]
"""
H = HT.T
De = np.diag(np.sum(H, axis = 0)) # hyperedge degree matrix --> [num_hyperedges, num_hyperedge]
Dv = np.diag(np.sum(H, axis = 1)) # nodes degree matrix --> [num_nodes, num_nodes]
W = De # hyperedge weight matrix --> [hyperedge_num, hyperedge_num]
return H, Dv, De, W
def eig(H, Dv, De, W):
"""
This function aims to get hypergraph eigendecomposition.
Reference:
https://github.com/DevinKreuzer/SAN/blob/main/data/molecules.py
https://github.com/jw9730/tokengt/blob/main/large-scale-regression/tokengt/data/algos.py
H: a hypergraph incidence matrix, shape is [num_hypernodes, num_hyperedges], contains 0 and 1.
Dv: node degree matrix --> [num_nodes, num_nodes]
De: hyperedge degree matrix --> [hyperedge_num, hyperedge_num]
W: hyperedge weight matrix --> [hyperedge_num, hyperedge_num]
return:
EigVal: eigenvalue --> [num_nodes, 1]
EigVec: eigenvector --> [num_nodes, num_nodes]
"""
Dv_half = np.diag(Dv.sum(axis = 0).clip(1) ** -0.5)
De_1 = np.diag(De.sum(axis = 1).clip(1) ** -1)
num_nodes = len(Dv)
delta = np.eye(num_nodes) - Dv_half @ H @ De_1 @ H.T @ Dv_half
EigVal, EigVec = np.linalg.eigh(delta)
# EigVal = np.sort(np.abs(np.real(EigVal)))
idx = EigVal.argsort()
EigVal, EigVec = EigVal[idx], np.real(EigVec[:, idx])
return EigVal, EigVec