论文阅读---REALISE model

REALISE model:

1.utilizes multiple encoders to obtain the semantic ,phonetic , and graphic information to distinguish the similarities of Chinese characters and correct the spelling errors.

2.And then, develop a selective modality fusion module to obtain the context-aware multimodal representations.

3.Finally ,the output layer predict the probabilities of error corrections.

Encoders:

Semantic encoder:

BERT, which provides rich contextual word representation with the unsupervised pretraining on large corpora.

复制代码
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

Tokenizer是一种文本处理工具,用于将文本分解成单个单词(称为tokens)或其他类型的单位,例如标点符号和数字。在自然语言处理领域,tokenizer通常用于将句子分解为单个单词或词元,以便进行文本分析和机器学习任务。常用的tokenizer包括基于规则的tokenizer和基于机器学习的tokenizer,其中基于机器学习的tokenizer可以自动识别单词和短语的边界,并将其分解为单个tokens。

Phonetic encoder

pinyin: initial(21)+final(39)+tone(5)

hierarchical phonetic encoder :character-level encoder and sentence-level encoder

Character-level encoder

GRU:

GRU(Gate Recurrent Unit)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

GRU和LSTM在很多情况下实际表现上相差无几,那么为什么我们要使用新人GRU(2014年提出)而不是相对经受了更多考验的LSTM(1997提出)呢。
我们在我们的实验中选择GRU是因为它的实验效果与LSTM相似,但是更易于计算。

Sentence-level Encoder: obtain the contextualized phonetic representation for each Chinese characters

4-layer Transformer with the same hidden size as the semantic encoder

because independent phonetic vectors are not distinguished in order, so we add the positional embeading to each vector. +pack the vector together ->transformer layers to calculate the contextualized representation in acoustic modality.

Graphic Encoder

ResNet

three fonds correpond to the three channels of the character images whose size is set to 32*32 pixel

Selective Modality Fusion Module

Ht, Ha,Hv ==textual ,acoustic,visual

fuse information i n different modalities

selective gate unit: select how much information flow to the mixed multimodal representation.

gate values :fully-connected layer followed by a sigmoid function.

Acoustic and Visual Pretraining

aims to learn the acoustic-textual and visual-textual relationships

phonetic encoder:input method pretraining objective

graphhic encoder:OCP pretraining objective

Data and Metrics

data:SIGHAN --->convert to simplified chinese by using the OPENCC tools

two level :detection and correction level to test the model

相关推荐
Lifeng666666667 小时前
chatgpt是怎么诞生的,详解GPT1到GPT4的演化之路及相关背景知识
论文阅读·人工智能·语言模型·chatgpt
Booksort9 小时前
【论文笔记】A Deep Reinforcement Learning Based Real-Time Solution Policy for the TSP
论文阅读
北温凉19 小时前
【论文阅读】基于注意力机制的冥想脑电分类识别研究(2025)
论文阅读·分类·数据挖掘
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | AI助力软件可解释性:从用户评论到自动生成需求与解释
论文阅读·人工智能·软件工程
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | LLM辅助软件开发:需求如何转化为代码?
论文阅读·人工智能·软件工程
0x2112 天前
[论文阅读]Text Compression for Efficient Language Generation
论文阅读
Jamence3 天前
多模态大语言模型arxiv论文略读(153)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
莫彩3 天前
【大模型推理论文阅读】Enhancing Latent Computation in Transformerswith Latent Tokens
论文阅读·人工智能·语言模型
崔高杰3 天前
微调性能赶不上提示工程怎么办?Can Gradient Descent Simulate Prompting?——论文阅读笔记
论文阅读·人工智能·笔记·语言模型
张较瘦_3 天前
[论文阅读] 人工智能 | 5C提示词框架的研究
论文阅读·人工智能