论文阅读---REALISE model

REALISE model:

1.utilizes multiple encoders to obtain the semantic ,phonetic , and graphic information to distinguish the similarities of Chinese characters and correct the spelling errors.

2.And then, develop a selective modality fusion module to obtain the context-aware multimodal representations.

3.Finally ,the output layer predict the probabilities of error corrections.

Encoders:

Semantic encoder:

BERT, which provides rich contextual word representation with the unsupervised pretraining on large corpora.

复制代码
from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

Tokenizer是一种文本处理工具,用于将文本分解成单个单词(称为tokens)或其他类型的单位,例如标点符号和数字。在自然语言处理领域,tokenizer通常用于将句子分解为单个单词或词元,以便进行文本分析和机器学习任务。常用的tokenizer包括基于规则的tokenizer和基于机器学习的tokenizer,其中基于机器学习的tokenizer可以自动识别单词和短语的边界,并将其分解为单个tokens。

Phonetic encoder

pinyin: initial(21)+final(39)+tone(5)

hierarchical phonetic encoder :character-level encoder and sentence-level encoder

Character-level encoder

GRU:

GRU(Gate Recurrent Unit)是循环神经网络(Recurrent Neural Network, RNN)的一种。和LSTM(Long-Short Term Memory)一样,也是为了解决长期记忆和反向传播中的梯度等问题而提出来的。

GRU和LSTM在很多情况下实际表现上相差无几,那么为什么我们要使用新人GRU(2014年提出)而不是相对经受了更多考验的LSTM(1997提出)呢。
我们在我们的实验中选择GRU是因为它的实验效果与LSTM相似,但是更易于计算。

Sentence-level Encoder: obtain the contextualized phonetic representation for each Chinese characters

4-layer Transformer with the same hidden size as the semantic encoder

because independent phonetic vectors are not distinguished in order, so we add the positional embeading to each vector. +pack the vector together ->transformer layers to calculate the contextualized representation in acoustic modality.

Graphic Encoder

ResNet

three fonds correpond to the three channels of the character images whose size is set to 32*32 pixel

Selective Modality Fusion Module

Ht, Ha,Hv ==textual ,acoustic,visual

fuse information i n different modalities

selective gate unit: select how much information flow to the mixed multimodal representation.

gate values :fully-connected layer followed by a sigmoid function.

Acoustic and Visual Pretraining

aims to learn the acoustic-textual and visual-textual relationships

phonetic encoder:input method pretraining objective

graphhic encoder:OCP pretraining objective

Data and Metrics

data:SIGHAN --->convert to simplified chinese by using the OPENCC tools

two level :detection and correction level to test the model

相关推荐
Chandler_Song1 天前
【读书笔记】《有限与无限的游戏》
论文阅读
无妄无望1 天前
目标计数论文阅读(2)Learning To Count Everything
论文阅读·everything
七元权1 天前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
李加号pluuuus1 天前
【论文阅读】Language-Guided Image Tokenization for Generation
论文阅读
ZHANG8023ZHEN1 天前
fMoE论文阅读笔记
论文阅读·笔记
张较瘦_1 天前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
有Li2 天前
基于联邦学习与神经架构搜索的可泛化重建:用于加速磁共振成像|文献速递-最新医学人工智能文献
论文阅读·人工智能·文献·医学生
川川子溢2 天前
【论文阅读】MEDDINOV3:如何调整视觉基础模型用于医学图像分割?
论文阅读
Xy-unu2 天前
[VL|RIS] RSRefSeg 2
论文阅读·人工智能·transformer·论文笔记·分割
张较瘦_3 天前
[论文阅读] 告别“数量为王”:双轨道会议模型+LS,破解AI时代学术交流困局
论文阅读·人工智能