多模态大模型的前沿算法综述

  1. LLaVA:视觉-语言高效融合架构

LLaVA采用"视觉编码器 + 语言模型"的简洁设计,通过Vision Transformer提取图像特征,并将其投影至语言模型的词嵌入空间,实现跨模态语义对齐。该架构优势在于可充分复用现有语言模型能力,无需从头训练,部署便捷且推理速度较复杂架构提升约30%,在多项多模态理解任务中表现卓越。

  1. BLIP-2:跨模态连接与对齐框架

BLIP-2通过Query Transformer构建视觉与语言模型之间的桥梁,仅需训练中间连接层即可实现高效模态融合。在图文检索等任务中,其检索精度较传统方法提升约25%。该方法采用对比学习实现特征对齐,并结合生成式训练增强语义理解,兼顾判别与生成能力。

  1. Flamingo:小样本学习与泛化增强

Flamingo在语言模型中插入交叉注意力层,支持在推理过程中参考少量示例完成新任务,具备卓越的小样本泛化能力。该设计无需针对每项任务重新训练,仅需提供数个图文示例即可引导模型举一反三,显著提升模型在开放场景中的适应性与实用性。

  1. InstructBLIP:指令驱动的可控生成

通过大规模指令数据对模型进行微调,InstructBLIP能够准确理解并执行复杂指令,大幅增强生成内容的可控性与准确性。其方法基于构建"指令-图像-回答"三元组数据集,采用监督学习策略训练模型按指令生成响应,有效避免无关或错误输出。

  1. MiniGPT:轻量化与边缘部署优化

MiniGPT系列针对资源受限场景,通过知识蒸馏与模型压缩技术,在保持性能的同时显著降低计算需求。该模型可在普通GPU上高效运行,部署成本降低约80%,适用于边缘设备实时图像理解任务,实测推理延迟可控制在100毫秒以内。

相关推荐
zhangfeng1133几秒前
大语言模型llm 量化模型 跑在 边缘设备小显存显卡 GGUF GGML PyTorch (.pth, .bin, SafeTensors)
人工智能·pytorch·深度学习·语言模型
纤纡.几秒前
深度学习环境搭建:CUDA+PyTorch+TorchVision+Torchaudio 一站式安装教程
人工智能·pytorch·深度学习
方见华Richard2 分钟前
《认知几何学:思维如何弯曲意义空间》补充材料
人工智能·经验分享·交互·原型模式·空间计算
石去皿3 分钟前
一款轻量级桌面级图片批量压缩工具,专为高效减小图片文件体积而设计,面向latex编译速度优化
网络·人工智能·工具·压缩图片
柳安忆3 分钟前
【论文阅读】2025.11-2026.1 AI科学家论文阅读
人工智能
是小蟹呀^4 分钟前
图像识别/分类常见学习范式:有监督、无监督、自监督、半监督……(通俗版)
人工智能·深度学习·分类
kebijuelun5 分钟前
Towards Automated Kernel Generation in the Era of LLMs:LLM 时代的自动化 Kernel 生成全景图
人工智能·gpt·深度学习·语言模型
2501_941322036 分钟前
牛只行为识别研究:基于YOLO13与UniRepLKNetBlock的智能分类系统_1
人工智能·分类·数据挖掘
清 晨7 分钟前
亚马逊跨境电商“账号健康与申诉(POA)”专项:规则更严时,别把一次失误变成长期封锁
人工智能·跨境电商·亚马逊·内容营销
玄同7657 分钟前
OpenClaw 完全指南:部署你的 7×24 小时开源 AI 助手
人工智能·开源·智能体·agentic rag·openclaw·clawd·molt