机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种广泛使用的无监督学习算法,它可以将一组数据分成 K 个簇,每个簇包含最接近的 K 个数据点。其基本思想是找到 K 个中心点,并将数据点分配到这些中心点附近的簇中。以下是 K-均值聚类算法的步骤:

  1. 初始化 K 个中心点,可以随机选择或者使用其他方法。

  2. 对于每个数据点,计算到各个中心点的距离,并将其分配给距离最近的中心点所在的簇。

  3. 更新每个簇的中心点,将其设置为该簇中所有数据点的平均值。

  4. 重复步骤2和3,直到簇不再改变为止。

优点:

  1. K-均值聚类算法易于理解和实现。
  2. 该算法计算速度相对较快,适用于大数据集。
  3. 它可以有效地处理高维数据。

缺点:

  1. K-均值聚类算法对于初始中心点的选择非常敏感,如果初始值选择不好,可能会陷入局部最优。
  2. 该算法需要事先确定簇的数量 K,这在实际问题中往往是不知道的。
  3. K-均值聚类算法对噪声和异常值比较敏感,其结果可能会被这些点影响。

总之,K-均值聚类算法是一种简单但有效的聚类算法,可以在许多实际问题中使用。然而,该算法仍然有其局限性和缺陷,需要根据具体情况进行选择和调整。

相关推荐
xixixi7777722 分钟前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
olivesun881 小时前
AI的第一篇编码实践-如何用RAG和LLM
人工智能
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
狒狒热知识1 小时前
2026年软文营销发稿平台优选指南:聚焦178软文网解锁高效传播新路径
大数据·人工智能
十铭忘1 小时前
个人思考3——世界动作模型
人工智能·深度学习·计算机视觉
rgb2gray1 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
大猫子的技术日记1 小时前
2025 AI Agent 开发实战指南:从上下文工程到多智能体协作
前端·人工智能·bootstrap
Hoking1 小时前
milvus向量数据库介绍与部署(docker-compose)
人工智能·milvus·向量数据库
PPIO派欧云1 小时前
PPIO 上线 MiniMax M2.5:体验架构师级编程与高效 Agent 能力
人工智能·ai·大模型