可能的二分法 -- 二分图判定【DFS、BFS分别实现】

886. 可能的二分法

python 复制代码
class PossibleBipartition:
    """
    可能的二分法
    「其实考察的就是二分图的判定」
    用dfs和bfs 两种方法分别实现
    https://leetcode.cn/problems/possible-bipartition/
    """
    def __init__(self):
        self.success = True
        self.color = []
        self.visited = []

    def dfs(self, n, dislikes):
        """
        DFS递归实现
        :param n: 
        :param dislikes:
        :return:
        """
        # 图节点编号为 1...n
        self.color = [False] * (n+1)
        self.visited = [False] * (n+1)
        graph = self.buildgraph(n, dislikes)

        # 因为图不一定是联通的,可能存在多个子图
        # 所以要把每个节点都作为起点进行一次遍历
        # 如果发现任何一个子图不是二分图,整幅图都不是二分图
        for v in range(1, n+1):
            if not self.visited[v]:
                self.dfs_traverse(graph, v)

        return self.success

    def buildgraph(self, n, dislikes):
        graph = [[] for _ in range(n+1)]

        for edge in dislikes:
            v = edge[1]
            w = edge[0]
            # 无向图相当于双向图
            graph[v].append(w)
            graph[w].append(v)

        return graph

    def dfs_traverse(self, graph, v):
        if not self.success:
            return

        self.visited[v] = True
        for w in graph[v]:
            if not self.visited[w]:
                self.color[w] = not self.color[v]
                self.dfs_traverse(graph, w)
            else:
                if self.color[v] == self.color[w]:
                    self.success = False
                    return

    def bfs(self, n, dislikes):
        """
        BFS实现,用队列替代递归调用
        :param n:
        :param dislikes:
        :return:
        """
        # 图节点编号为 1...n
        self.color = [False] * (n + 1)
        self.visited = [False] * (n + 1)
        graph = self.buildgraph(n, dislikes)

        # 因为图不一定是联通的,可能存在多个子图
        # 所以要把每个节点都作为起点进行一次遍历
        # 如果发现任何一个子图不是二分图,整幅图都不是二分图
        for v in range(1, n + 1):
            if not self.visited[v]:
                self.bfs_traverse(graph, v)

        return self.success

    def bfs_traverse(self, graph, start):
        # 节点队列
        queue = []
        self.visited[start] = True
        queue.append(start)

        while queue and self.success:
            v = queue.pop(0)
            # 从节点 v 向所有相邻节点扩散
            for w in graph[v]:
                if not self.visited[w]:
                    # 相邻节点w没有被访问过
                    # 那么应该给节点w涂上和节点v不同的颜⾊
                    self.color[w] = not self.color[v]
                    # 标记 w 节点,并放⼊队列
                    self.visited[w] = True
                    queue.append(w)
                else:
                    if self.color[v] == self.color[w]:
                        self.success = False
                        return
相关推荐
NeDon3 小时前
[OJ]数据结构:移除链表元素
c语言·数据结构·算法·链表
刃神太酷啦3 小时前
C++ list 容器全解析:从构造到模拟实现的深度探索----《Hello C++ Wrold!》(16)--(C/C++)
java·c语言·c++·qt·算法·leetcode·list
承渊政道3 小时前
一文彻底搞清楚链表算法实战大揭秘和双向链表实现
c语言·数据结构·算法·leetcode·链表·visual studio
sali-tec3 小时前
C# 基于halcon的视觉工作流-章69 深度学习-异常值检测
开发语言·图像处理·算法·计算机视觉·c#
努力写代码的熊大3 小时前
手撕AVL树:从理论到实践,掌握插入操作的完美平衡
算法
wbs_scy4 小时前
C++:二叉搜索树(BST)完全指南(从概念原理、核心操作到底层实现)
数据结构·算法
东华万里4 小时前
Release 版本禁用 assert:NDEBUG 的底层逻辑与效率优化
java·jvm·算法
liulilittle4 小时前
C++ CRTP 替代虚函数
数据结构·c++·算法
电摇小人4 小时前
莫比乌斯反演详细解说来啦!!!
数据结构·算法