可能的二分法 -- 二分图判定【DFS、BFS分别实现】

886. 可能的二分法

python 复制代码
class PossibleBipartition:
    """
    可能的二分法
    「其实考察的就是二分图的判定」
    用dfs和bfs 两种方法分别实现
    https://leetcode.cn/problems/possible-bipartition/
    """
    def __init__(self):
        self.success = True
        self.color = []
        self.visited = []

    def dfs(self, n, dislikes):
        """
        DFS递归实现
        :param n: 
        :param dislikes:
        :return:
        """
        # 图节点编号为 1...n
        self.color = [False] * (n+1)
        self.visited = [False] * (n+1)
        graph = self.buildgraph(n, dislikes)

        # 因为图不一定是联通的,可能存在多个子图
        # 所以要把每个节点都作为起点进行一次遍历
        # 如果发现任何一个子图不是二分图,整幅图都不是二分图
        for v in range(1, n+1):
            if not self.visited[v]:
                self.dfs_traverse(graph, v)

        return self.success

    def buildgraph(self, n, dislikes):
        graph = [[] for _ in range(n+1)]

        for edge in dislikes:
            v = edge[1]
            w = edge[0]
            # 无向图相当于双向图
            graph[v].append(w)
            graph[w].append(v)

        return graph

    def dfs_traverse(self, graph, v):
        if not self.success:
            return

        self.visited[v] = True
        for w in graph[v]:
            if not self.visited[w]:
                self.color[w] = not self.color[v]
                self.dfs_traverse(graph, w)
            else:
                if self.color[v] == self.color[w]:
                    self.success = False
                    return

    def bfs(self, n, dislikes):
        """
        BFS实现,用队列替代递归调用
        :param n:
        :param dislikes:
        :return:
        """
        # 图节点编号为 1...n
        self.color = [False] * (n + 1)
        self.visited = [False] * (n + 1)
        graph = self.buildgraph(n, dislikes)

        # 因为图不一定是联通的,可能存在多个子图
        # 所以要把每个节点都作为起点进行一次遍历
        # 如果发现任何一个子图不是二分图,整幅图都不是二分图
        for v in range(1, n + 1):
            if not self.visited[v]:
                self.bfs_traverse(graph, v)

        return self.success

    def bfs_traverse(self, graph, start):
        # 节点队列
        queue = []
        self.visited[start] = True
        queue.append(start)

        while queue and self.success:
            v = queue.pop(0)
            # 从节点 v 向所有相邻节点扩散
            for w in graph[v]:
                if not self.visited[w]:
                    # 相邻节点w没有被访问过
                    # 那么应该给节点w涂上和节点v不同的颜⾊
                    self.color[w] = not self.color[v]
                    # 标记 w 节点,并放⼊队列
                    self.visited[w] = True
                    queue.append(w)
                else:
                    if self.color[v] == self.color[w]:
                        self.success = False
                        return
相关推荐
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_20242 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
香菜大丸3 小时前
链表的归并排序
数据结构·算法·链表
jrrz08283 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
oliveira-time3 小时前
golang学习2
算法
南宫生4 小时前
贪心算法习题其四【力扣】【算法学习day.21】
学习·算法·leetcode·链表·贪心算法
懒惰才能让科技进步5 小时前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Ni-Guvara5 小时前
函数对象笔记
c++·算法
泉崎5 小时前
11.7比赛总结
数据结构·算法
你好helloworld5 小时前
滑动窗口最大值
数据结构·算法·leetcode