实战:基于卷积的MNIST手写体分类

前面实现了基于多层感知机的MNIST手写体识别,本章将实现以卷积神经网络完成的MNIST手写体识别。

1. 数据的准备

在本例中,依旧使用MNIST数据集,对这个数据集的数据和标签介绍,前面的章节已详细说明过了,相对于前面章节直接对数据进行"折叠"处理,这里需要显式地标注出数据的通道,代码如下:

复制代码
import numpy as np

import einops.layers.torch as elt

#载入数据

x_train = np.load("../dataset/mnist/x_train.npy")

y_train_label = np.load("../dataset/mnist/y_train_label.npy")

x_train = np.expand_dims(x_train,axis=1)   #在指定维度上进行扩充

print(x_train.shape)

这里是对数据的修正,np.expand_dims的作用是在指定维度上进行扩充,这里在第二维(也就是PyTorch的通道维度)进行扩充,结果如下:

(60000, 1, 28, 28)

2. 模型的设计

下面使用PyTorch 2.0框架对模型进行设计,在本例中将使用卷积层对数据进行处理,完整的模型如下:

复制代码
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
class MnistNetword(nn.Module):
    def __init__(self):
        super(MnistNetword, self).__init__()
        #前置的特征提取模块
        self.convs_stack = nn.Sequential(
            nn.Conv2d(1,12,kernel_size=7),  	#第一个卷积层
            nn.ReLU(),
            nn.Conv2d(12,24,kernel_size=5), 	#第二个卷积层
            nn.ReLU(),
            nn.Conv2d(24,6,kernel_size=3)  	#第三个卷积层
        )
        #最终分类器层
        self.logits_layer = nn.Linear(in_features=1536,out_features=10)
    def forward(self,inputs):
        image = inputs
        x = self.convs_stack(image)        
        #elt.Rearrange的作用是对输入数据的维度进行调整,读者可以使用torch.nn.Flatten函数完成此工作
        x = elt.Rearrange("b c h w -> b (c h w)")(x)
        logits = self.logits_layer(x)
        return logits
model = MnistNetword()
torch.save(model,"model.pth")

这里首先设定了3个卷积层作为前置的特征提取层,最后一个全连接层作为分类器层,需要注意的是,对于分类器的全连接层,输入维度需要手动计算,当然读者可以一步一步尝试打印特征提取层的结果,依次将结果作为下一层的输入维度。最后对模型进行保存。

3. 基于卷积的MNIST分类模型

下面进入本章的最后示例部分,也就是MNIST手写体的分类。完整的训练代码如下:

复制代码
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
#载入数据
x_train = np.load("../dataset/mnist/x_train.npy")
y_train_label = np.load("../dataset/mnist/y_train_label.npy")
x_train = np.expand_dims(x_train,axis=1)
print(x_train.shape)
class MnistNetword(nn.Module):
    def __init__(self):
        super(MnistNetword, self).__init__()
        self.convs_stack = nn.Sequential(
            nn.Conv2d(1,12,kernel_size=7),
            nn.ReLU(),
            nn.Conv2d(12,24,kernel_size=5),
            nn.ReLU(),
            nn.Conv2d(24,6,kernel_size=3)
        )
        self.logits_layer = nn.Linear(in_features=1536,out_features=10)
    def forward(self,inputs):
        image = inputs
        x = self.convs_stack(image)
        x = elt.Rearrange("b c h w -> b (c h w)")(x)
        logits = self.logits_layer(x)
        return logits
device = "cuda" if torch.cuda.is_available() else "cpu"
#注意记得将model发送到GPU计算
model = MnistNetword().to(device)
model = torch.compile(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
batch_size = 128
for epoch in range(42):
    train_num = len(x_train)//128
    train_loss = 0.
    for i in range(train_num):
        start = i * batch_size
        end = (i + 1) * batch_size
        x_batch = torch.tensor(x_train[start:end]).to(device)
        y_batch = torch.tensor(y_train_label[start:end]).to(device)
        pred = model(x_batch)
        loss = loss_fn(pred, y_batch)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()  # 记录每个批次的损失值
    # 计算并打印损失值
    train_loss /= train_num
    accuracy = (pred.argmax(1) == y_batch).type(torch.float32).sum().item() / batch_size
    print("epoch:",epoch,"train_loss:", round(train_loss,2),"accuracy:",round(accuracy,2))

在这里,我们使用了本章新定义的卷积神经网络模块作为局部特征抽取,而对于其他的损失函数以及优化函数,只使用了与前期一样的模式进行模型训练。最终结果如下所示,请读者自行验证。

复制代码
(60000, 1, 28, 28)
epoch: 0 train_loss: 2.3 accuracy: 0.11
epoch: 1 train_loss: 2.3 accuracy: 0.13
epoch: 2 train_loss: 2.3 accuracy: 0.2
epoch: 3 train_loss: 2.3 accuracy: 0.18
...
epoch: 58 train_loss: 0.5 accuracy: 0.98
epoch: 59 train_loss: 0.49 accuracy: 0.98
epoch: 60 train_loss: 0.49 accuracy: 0.98
epoch: 61 train_loss: 0.48 accuracy: 0.98
epoch: 62 train_loss: 0.48 accuracy: 0.98

Process finished with exit code 0

本文节选自《PyTorch 2.0深度学习从零开始学》,本书实战案例丰富,可带领读者快速掌握深度学习算法及其常见案例。

相关推荐
大写-凌祁4 分钟前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热29 分钟前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生31 分钟前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn36 分钟前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威2 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖2 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站2 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具
AKAMAI2 小时前
Queue-it 为数十亿用户增强在线体验
人工智能·云原生·云计算
索迪迈科技2 小时前
INDEMIND亮相2025科技创变者大会,以机器人空间智能技术解锁具身智能新边界
人工智能·机器人·扫地机器人·空间智能·陪伴机器人
栒U2 小时前
一文从零部署vLLM+qwen0.5b(mac本地版,不可以实操GPU单元)
人工智能·macos·vllm