实战:基于卷积的MNIST手写体分类

前面实现了基于多层感知机的MNIST手写体识别,本章将实现以卷积神经网络完成的MNIST手写体识别。

1. 数据的准备

在本例中,依旧使用MNIST数据集,对这个数据集的数据和标签介绍,前面的章节已详细说明过了,相对于前面章节直接对数据进行"折叠"处理,这里需要显式地标注出数据的通道,代码如下:

复制代码
import numpy as np

import einops.layers.torch as elt

#载入数据

x_train = np.load("../dataset/mnist/x_train.npy")

y_train_label = np.load("../dataset/mnist/y_train_label.npy")

x_train = np.expand_dims(x_train,axis=1)   #在指定维度上进行扩充

print(x_train.shape)

这里是对数据的修正,np.expand_dims的作用是在指定维度上进行扩充,这里在第二维(也就是PyTorch的通道维度)进行扩充,结果如下:

(60000, 1, 28, 28)

2. 模型的设计

下面使用PyTorch 2.0框架对模型进行设计,在本例中将使用卷积层对数据进行处理,完整的模型如下:

复制代码
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
class MnistNetword(nn.Module):
    def __init__(self):
        super(MnistNetword, self).__init__()
        #前置的特征提取模块
        self.convs_stack = nn.Sequential(
            nn.Conv2d(1,12,kernel_size=7),  	#第一个卷积层
            nn.ReLU(),
            nn.Conv2d(12,24,kernel_size=5), 	#第二个卷积层
            nn.ReLU(),
            nn.Conv2d(24,6,kernel_size=3)  	#第三个卷积层
        )
        #最终分类器层
        self.logits_layer = nn.Linear(in_features=1536,out_features=10)
    def forward(self,inputs):
        image = inputs
        x = self.convs_stack(image)        
        #elt.Rearrange的作用是对输入数据的维度进行调整,读者可以使用torch.nn.Flatten函数完成此工作
        x = elt.Rearrange("b c h w -> b (c h w)")(x)
        logits = self.logits_layer(x)
        return logits
model = MnistNetword()
torch.save(model,"model.pth")

这里首先设定了3个卷积层作为前置的特征提取层,最后一个全连接层作为分类器层,需要注意的是,对于分类器的全连接层,输入维度需要手动计算,当然读者可以一步一步尝试打印特征提取层的结果,依次将结果作为下一层的输入维度。最后对模型进行保存。

3. 基于卷积的MNIST分类模型

下面进入本章的最后示例部分,也就是MNIST手写体的分类。完整的训练代码如下:

复制代码
import torch
import torch.nn as nn
import numpy as np
import einops.layers.torch as elt
#载入数据
x_train = np.load("../dataset/mnist/x_train.npy")
y_train_label = np.load("../dataset/mnist/y_train_label.npy")
x_train = np.expand_dims(x_train,axis=1)
print(x_train.shape)
class MnistNetword(nn.Module):
    def __init__(self):
        super(MnistNetword, self).__init__()
        self.convs_stack = nn.Sequential(
            nn.Conv2d(1,12,kernel_size=7),
            nn.ReLU(),
            nn.Conv2d(12,24,kernel_size=5),
            nn.ReLU(),
            nn.Conv2d(24,6,kernel_size=3)
        )
        self.logits_layer = nn.Linear(in_features=1536,out_features=10)
    def forward(self,inputs):
        image = inputs
        x = self.convs_stack(image)
        x = elt.Rearrange("b c h w -> b (c h w)")(x)
        logits = self.logits_layer(x)
        return logits
device = "cuda" if torch.cuda.is_available() else "cpu"
#注意记得将model发送到GPU计算
model = MnistNetword().to(device)
model = torch.compile(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
batch_size = 128
for epoch in range(42):
    train_num = len(x_train)//128
    train_loss = 0.
    for i in range(train_num):
        start = i * batch_size
        end = (i + 1) * batch_size
        x_batch = torch.tensor(x_train[start:end]).to(device)
        y_batch = torch.tensor(y_train_label[start:end]).to(device)
        pred = model(x_batch)
        loss = loss_fn(pred, y_batch)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_loss += loss.item()  # 记录每个批次的损失值
    # 计算并打印损失值
    train_loss /= train_num
    accuracy = (pred.argmax(1) == y_batch).type(torch.float32).sum().item() / batch_size
    print("epoch:",epoch,"train_loss:", round(train_loss,2),"accuracy:",round(accuracy,2))

在这里,我们使用了本章新定义的卷积神经网络模块作为局部特征抽取,而对于其他的损失函数以及优化函数,只使用了与前期一样的模式进行模型训练。最终结果如下所示,请读者自行验证。

复制代码
(60000, 1, 28, 28)
epoch: 0 train_loss: 2.3 accuracy: 0.11
epoch: 1 train_loss: 2.3 accuracy: 0.13
epoch: 2 train_loss: 2.3 accuracy: 0.2
epoch: 3 train_loss: 2.3 accuracy: 0.18
...
epoch: 58 train_loss: 0.5 accuracy: 0.98
epoch: 59 train_loss: 0.49 accuracy: 0.98
epoch: 60 train_loss: 0.49 accuracy: 0.98
epoch: 61 train_loss: 0.48 accuracy: 0.98
epoch: 62 train_loss: 0.48 accuracy: 0.98

Process finished with exit code 0

本文节选自《PyTorch 2.0深度学习从零开始学》,本书实战案例丰富,可带领读者快速掌握深度学习算法及其常见案例。

相关推荐
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松3 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_13 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫3 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain