opencv 案例05-基于二值图像分析(简单缺陷检测)

缺陷检测,分为两个部分,一个部分是提取指定的轮廓,第二个部分通过对比实现划痕检测与缺角检测。本次主要搞定第一部分,学会观察图像与提取图像ROI对象轮廓外接矩形与轮廓。

下面是基于二值图像分析的大致流程

  1. 读取图像
  2. 将图像转换为灰度图,并对其进行二值化处理。
cpp 复制代码
# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | 
  1. 进行形态学开运算以去除噪声和平滑图像。
cpp 复制代码
cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)
  1. 提取图像中的轮廓。
cpp 复制代码
# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
  1. 针对每个轮廓,计算其外接矩形,并根据一些条件绘制矩形和轮廓。
cpp 复制代码
height, width = src.shape[:2]
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    # 根据条件过滤不符合要求的轮廓
    if h > (height//2):
        continue
    if area < 150:
        continue
    cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)
    cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)

整理示例:检测图片中的缺陷并将缺陷框选出来

原图:

代码如下:

cpp 复制代码
import cv2 as cv


src = cv.imread("que01.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
# 形态学开运算去除噪声和平滑图像
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)

# 提取图像中的轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)

height, width = src.shape[:2]
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    # 根据条件过滤不符合要求的轮廓
    if h > (height//2):
        continue
    if area < 150:
        continue
    cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)
    cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)

cv.imshow("result", src)
cv.imwrite("binary2.png", src)

cv.waitKey(0)
cv.destroyAllWindows()

运行结果如下:

示例2:

原图:

修改上面的图片路径地址运行看效果

对于明显的缺陷检测还是可以的,但是实际生产的缺陷肯定不是这么明显的,如下图:

后续讲解这类的缺陷该如何检测,敬请期待!!!!

相关推荐
zm-v-159304339861 小时前
从CNN到Transformer:遥感影像目标检测的未来趋势
目标检测·cnn·transformer
刘什么洋啊Zz3 小时前
MacOS下使用Ollama本地构建DeepSeek并使用本地Dify构建AI应用
人工智能·macos·ai·ollama·deepseek
奔跑草-4 小时前
【拥抱AI】GPT Researcher 源码试跑成功的心得与总结
人工智能·gpt·ai搜索·deep research·深度检索
禁默4 小时前
【第四届网络安全、人工智能与数字经济国际学术会议(CSAIDE 2025】网络安全,人工智能,数字经济的研究
人工智能·安全·web安全·数字经济·学术论文
AnnyYoung6 小时前
华为云deepseek大模型平台:deepseek满血版
人工智能·ai·华为云
INDEMIND7 小时前
INDEMIND:AI视觉赋能服务机器人,“零”碰撞避障技术实现全天候安全
人工智能·视觉导航·服务机器人·商用机器人
慕容木木7 小时前
【全网最全教程】使用最强DeepSeekR1+联网的火山引擎,没有生成长度限制,DeepSeek本体的替代品,可本地部署+知识库,注册即可有750w的token使用
人工智能·火山引擎·deepseek·deepseek r1
南 阳7 小时前
百度搜索全面接入DeepSeek-R1满血版:AI与搜索的全新融合
人工智能·chatgpt
企鹅侠客7 小时前
开源免费文档翻译工具 可支持pdf、word、excel、ppt
人工智能·pdf·word·excel·自动翻译
冰淇淋百宝箱8 小时前
AI 安全时代:SDL与大模型结合的“王炸组合”——技术落地与实战指南
人工智能·安全