VPG算法

VPG算法

前言

首先来看经典的策略梯度REINFORCE算法:

在REINFORCE中,每次采集一个episode的轨迹,计算每一步动作的回报 G t G_t Gt,与动作概率对数相乘,作为误差反向传播,有以下几个特点:

  • 每个时间步更新一次参数
  • 只有策略网络,没有价值网络
  • 计算 G G G时,仅仅采样了一条轨迹
  • 一般来说,计算 G G G时,从最后的时间步开始往前计算,这是为了节省计算量
  • G G G实际上类似于 Q Q Q函数,因为 Q Q Q函数就是动作价值回报的期望

VPG算法

全称:Vanilla Policy Gradient,但是属于Actor-Critic算法,因为它既有策略网络,又有价值网络

  • 每个episode更新一次参数
  • 上述伪代码中,计算 G G G时,采样了多个轨迹
  • 一般来说,计算 G G G时,从最后的时间步开始往前计算,这是为了节省计算量
  • Reward-to-go:即折扣因子 γ = 1 \gamma=1 γ=1, G t = R ^ t = r t + r t + 1 + ... + r T G_t=\hat{R}t=r_t+r{t+1}+\ldots+r_T Gt=R^t=rt+rt+1+...+rT, T T T为episode的长度
  • 通常为 A ^ t \hat{A}_t A^t引入baseline,以减小方差,提升训练稳定性

A ^ t = R ^ t − V ϕ k \hat{A}_t=\hat{R}t-V{\phi_k} A^t=R^t−Vϕk

比较

/ REINFORCE VPG
价值网络
参数更新 每个时间步 每个episode
回报 有折扣 无折扣
采样轨迹 一条 多条
baseline
相关推荐
JJJJ_iii3 天前
【机器学习16】连续状态空间、深度Q网络DQN、经验回放、探索与利用
人工智能·笔记·python·机器学习·强化学习
CoovallyAIHub4 天前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
深度学习·计算机视觉·强化学习
盼小辉丶5 天前
优势演员-评论家(Advantage Actor-Critic,A2C)算法详解与实现
深度学习·keras·强化学习
AI-Frontiers5 天前
收藏!强化学习从入门到封神:5 本经典教材 + 8 大实战项目 + 7个免费视频,一站式搞定
强化学习
山顶夕景5 天前
【RL】Scaling RL Compute for LLMs
深度学习·大模型·强化学习
九年义务漏网鲨鱼8 天前
【Agentic RL 专题】二、Agentic RL——Memory
人工智能·大模型·强化学习·记忆模块
盼小辉丶8 天前
Double DQN(DDQN)详解与实现
深度学习·keras·强化学习
沉迷单车的追风少年10 天前
Diffusion Model与视频超分(2):解读字节开源视频增强模型SeedVR2
人工智能·深度学习·aigc·音视频·强化学习·视频生成·视频超分
信鑫10 天前
AIO Sandbox:为 AI Agent 打造的一体化、可定制的沙箱环境
llm·agent·强化学习
武子康16 天前
AI研究-109-具身智能 机器人模型验证SOP流程详解|仿真 现实 回放 模板&理论
人工智能·机器人·强化学习·ros2·具身智能·仿真测试·a/b测试