VPG算法

VPG算法

前言

首先来看经典的策略梯度REINFORCE算法:

在REINFORCE中,每次采集一个episode的轨迹,计算每一步动作的回报 G t G_t Gt,与动作概率对数相乘,作为误差反向传播,有以下几个特点:

  • 每个时间步更新一次参数
  • 只有策略网络,没有价值网络
  • 计算 G G G时,仅仅采样了一条轨迹
  • 一般来说,计算 G G G时,从最后的时间步开始往前计算,这是为了节省计算量
  • G G G实际上类似于 Q Q Q函数,因为 Q Q Q函数就是动作价值回报的期望

VPG算法

全称:Vanilla Policy Gradient,但是属于Actor-Critic算法,因为它既有策略网络,又有价值网络

  • 每个episode更新一次参数
  • 上述伪代码中,计算 G G G时,采样了多个轨迹
  • 一般来说,计算 G G G时,从最后的时间步开始往前计算,这是为了节省计算量
  • Reward-to-go:即折扣因子 γ = 1 \gamma=1 γ=1, G t = R ^ t = r t + r t + 1 + ... + r T G_t=\hat{R}t=r_t+r{t+1}+\ldots+r_T Gt=R^t=rt+rt+1+...+rT, T T T为episode的长度
  • 通常为 A ^ t \hat{A}_t A^t引入baseline,以减小方差,提升训练稳定性

A ^ t = R ^ t − V ϕ k \hat{A}_t=\hat{R}t-V{\phi_k} A^t=R^t−Vϕk

比较

/ REINFORCE VPG
价值网络
参数更新 每个时间步 每个episode
回报 有折扣 无折扣
采样轨迹 一条 多条
baseline
相关推荐
强化学习与机器人控制仿真2 天前
RSL-RL:开源人形机器人强化学习控制研究库
开发语言·人工智能·stm32·神经网络·机器人·强化学习·模仿学习
山顶夕景3 天前
【RL】Does RLVR enable LLMs to self-improve?
深度学习·llm·强化学习·rlvr
神州问学8 天前
「干货长文」强化学习完全指南:从基础MDP到TRPO/PPO/GRPO算法演进
强化学习
九年义务漏网鲨鱼8 天前
【多模态大模型面经】现代大模型架构(一): 组注意力机制(GQA)和 RMSNorm
人工智能·深度学习·算法·架构·大模型·强化学习
ModestCoder_9 天前
【学习笔记】Diffusion Policy for Robotics
论文阅读·人工智能·笔记·学习·机器人·强化学习·具身智能
AI-Frontiers9 天前
小白也能看懂的RLHF:基础篇
强化学习
九年义务漏网鲨鱼12 天前
【大模型面经】千问系列专题面经
人工智能·深度学习·算法·大模型·强化学习
山顶夕景12 天前
【RL-LLM】Self-Rewarding Language Models
llm·强化学习·rl·dpo
山顶夕景12 天前
【RL】ORPO: Monolithic Preference Optimization without Reference Model
大模型·llm·强化学习·rl
Philtell14 天前
【强化学习基础概念】
强化学习