强化学习入门-3(AC)

强化学习项目-3-CartPole-v1(AC)

环境

本环境是OpenAI Gym提供的一个经典控制环境。

官网链接:https://gymnasium.farama.org/environments/classic_control/cart_pole/

观测空间(状态S)

状态共包含 4 4 4个参数:

  • 车位置(Cart Position)
  • 车速(Cart Velocity)
  • 杆子的角度(Pole Angle)
  • 角速度(Pole Angular Velocity)

动作空间(动作A)

  • 0: 推动车向左移动
  • 1: 推动车向右移动

奖励

每坚持一步,环境将会给出 1 1 1点奖励,最大可以获得 500 500 500奖励,同时只要达到 200 200 200就视为达到通过门槛。

引入环境

下载包
text 复制代码
pip install gymnasium
导入
python 复制代码
import gymnasium as gym
env = gym.make("CartPole-v1", render_mode="human")
# 获取状态维度和动作维度
state_dim  = env.observation_space.shape[0] if len(env.observation_space.shape) == 1 else env.observation_space.n
action_dim = env.action_space.n

AC算法(actor-critic)

区别于传统的 D Q N DQN DQN算法仅训练一个网络用于预测 Q ( s , a ) Q(s,a) Q(s,a), A C AC AC算法则分成两个网络:

  • A c t o r Actor Actor : 针对状态 s s s,输出动作的概率分布
  • C r i t i c Critic Critic : 价值估计器,这里采用 V ( s ) V(s) V(s),即从状态 s s s出发的期望奖励

Tips: V ( s ) = ∑ a i ∈ a c t i o n s V ( s i ′ ) × c i , c i 表示选择动作 a i V(s) = \sum\limits_{a_i \in actions} V(s_{i}^{\prime}) \times c_{i}, c_{i}\text{表示选择动作} a_{i} V(s)=ai∈actions∑V(si′)×ci,ci表示选择动作ai的概率, s i ′ s_{i}^{\prime} si′表示在状态 s s s选择动作 a i a_{i} ai到达的新状态

C r i t i c Critic Critic通过预测的 T D TD TD残差引导 A c t o r Actor Actor更新,而 C r i t i c Critic Critic则通过 T D TD TD目标更新

同时, A c t o r − C r i t i c Actor-Critic Actor−Critic的训练不能像 D Q N DQN DQN算法一样使用历史经验用于训练,每轮训练的数据仅使用本次模型与环境交互的全部数据

Actor网络

这里采用两层隐藏层,同时输出层采用Softmax激活函数,以预测状态 s s s下动作 a a a的概率分布

python 复制代码
class Actor(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Actor, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, action_dim), nn.Softmax(dim=-1)
        )

    def forward(self, x):
        return self.net(x)

Critic网络

这里采用两层隐藏层,输出层无激活函数且仅包含一个神经元,用于预测 V ( s ) V(s) V(s)

python 复制代码
class Critic(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Critic, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim),nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),nn.ReLU(),
            nn.Linear(hidden_dim, 1)
        )

    def forward(self, x):
        return self.net(x)

Actor-Critic

初始化

A C AC AC算法的初始化较为简单,仅需初始化 A C AC AC两个神经网络,对应的优化器以及折扣因子即可

python 复制代码
class ActorCritic():
    def __init__(self, gamma):
        self.actor = Actor().to(device)
        self.critic = Critic().to(device)
        self.optimizer_a = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.optimizer_c = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        self.gamma = gamma
动作选择

动作选择通过 A c t o r Actor Actor网络传入状态 s s s后预测得到概率分布后采样得到

python 复制代码
    def act(self, states):
        states = torch.from_numpy(states).float().to(device)
        with torch.no_grad():
            probs = self.actor(states)
        disk = torch.distributions.Categorical(probs)
        return disk.sample().item()
模型训练

先通过 C r i t i c Critic Critic网络预测的结果计算得到 T D TD TD目标以及 T D TD TD残差,然后分别计算得到两个网络的损失函数用于更新模型。

Tips:

  • 这里为了计算更加稳定,对选择当前动作的概率取对数,同时为了避免当一个动作选择概率为 0 0 0时,此时取对数会出现无穷小 N a n Nan Nan的情况,计算时将概率加上 1 0 − 9 10^{-9} 10−9
  • 对于表现好的动作(即 V ( s ′ ) V(s^{\prime}) V(s′)更大的动作),选择该动作的概率更高才能使得模型的表现更佳,因此 A c t o r Actor Actor网络采取的是梯度上升
python 复制代码
    def train(self, states, actions, rewards, next_states, dones):
        td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
        td_delta = td_target - self.critic(states)
        log_probs = torch.log(self.actor(states).gather(1, actions) + 1e-9)
        actor_loss = torch.mean(-log_probs * td_delta.detach())
        critic_loss = nn.functional.mse_loss(self.critic(states), td_target.detach())
        self.optimizer_c.zero_grad()
        self.optimizer_a.zero_grad()
        critic_loss.backward()
        actor_loss.backward()
        self.optimizer_c.step()
        self.optimizer_a.step()

环境交互

这里与 D Q N DQN DQN不同的是,每轮都需要重新收集训练数据,且在本轮交互结束后才对模型进行训练。

Hint: 注意训练前要将数据转换为Tensor

python 复制代码
torch.manual_seed(0)
actor_lr = 1e-4
critic_lr = 1e-3
gamma = 0.99
scores = []
episodes = 2000
model = ActorCritic(gamma)
from tqdm import tqdm
pbar = tqdm(range(episodes), desc="Training")
for episode in pbar:
    score = 0
    state, _ = env.reset()
    done = False
    states, actions, rewards, dones, next_states = [], [], [], [], []
    while not done:
        action = model.act(state)
        next_state, reward, done, truncated,_ = env.step(action)
        done = done or truncated
        score += reward
        states.append(state)
        actions.append(action)
        rewards.append(reward)
        next_states.append(next_state)
        dones.append(done)
        state = next_state
    states = torch.FloatTensor(np.array(states)).to(device)
    actions = torch.LongTensor(np.array(actions)).view(-1, 1).to(device)
    rewards = torch.FloatTensor(np.array(rewards)).view(-1, 1).to(device)
    next_states = torch.FloatTensor(np.array(next_states)).to(device)
    dones = torch.FloatTensor(np.array(dones)).view(-1, 1).to(device)
    model.train(states, actions, rewards, next_states, dones)
    scores.append(score)
    pbar.set_postfix(ep=episode, score=score, avg100=np.mean(scores[-100:]))
if np.mean(scores[-100:]) > 200:
    torch.save(model.actor.state_dict(),'../../model/cartpole-a.pt')
    torch.save(model.critic.state_dict(),'../../model/cartpole-c.pt')
print(np.mean(scores[-100:]))
plt.plot(scores)
plt.show()

完整程序

python 复制代码
import gymnasium as gym, torch, torch.nn as nn, numpy as np, matplotlib.pyplot as plt
from collections import deque

env = gym.make("CartPole-v1", render_mode="human")
state_dim  = env.observation_space.shape[0] if len(env.observation_space.shape) == 1 else env.observation_space.n
action_dim = env.action_space.n
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
class Actor(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Actor, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim), nn.ReLU(),
            nn.Linear(hidden_dim, action_dim), nn.Softmax(dim=-1)
        )

    def forward(self, x):
        return self.net(x)

class Critic(nn.Module):
    def __init__(self, hidden_dim = 128):
        super(Critic, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(state_dim, hidden_dim),nn.ReLU(),
            nn.Linear(hidden_dim, hidden_dim),nn.ReLU(),
            nn.Linear(hidden_dim, 1)
        )

    def forward(self, x):
        return self.net(x)

class ActorCritic():
    def __init__(self, gamma):
        self.actor = Actor().to(device)
        self.critic = Critic().to(device)
        self.optimizer_a = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
        self.optimizer_c = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
        self.gamma = gamma

    def act(self, states):
        states = torch.from_numpy(states).float().to(device)
        with torch.no_grad():
            probs = self.actor(states)
        disk = torch.distributions.Categorical(probs)
        return disk.sample().item()

    def train(self, states, actions, rewards, next_states, dones):
        td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)
        td_delta = td_target - self.critic(states)
        log_probs = torch.log(self.actor(states).gather(1, actions) + 1e-9)
        actor_loss = torch.mean(-log_probs * td_delta.detach())
        critic_loss = nn.functional.mse_loss(self.critic(states), td_target.detach())
        self.optimizer_c.zero_grad()
        self.optimizer_a.zero_grad()
        critic_loss.backward()
        actor_loss.backward()
        self.optimizer_c.step()
        self.optimizer_a.step()


torch.manual_seed(0)
actor_lr = 1e-4
critic_lr = 1e-3
gamma = 0.99
scores = []
episodes = 1000
model = ActorCritic(gamma)
from tqdm import tqdm
pbar = tqdm(range(episodes), desc="Training")
for episode in pbar:
    score = 0
    state, _ = env.reset()
    done = False
    states, actions, rewards, dones, next_states = [], [], [], [], []
    while not done:
        action = model.act(state)
        next_state, reward, done, truncated,_ = env.step(action)
        done = done or truncated
        score += reward
        states.append(state)
        actions.append(action)
        rewards.append(reward)
        next_states.append(next_state)
        dones.append(done)
        state = next_state
    states = torch.FloatTensor(np.array(states)).to(device)
    actions = torch.LongTensor(np.array(actions)).view(-1, 1).to(device)
    rewards = torch.FloatTensor(np.array(rewards)).view(-1, 1).to(device)
    next_states = torch.FloatTensor(np.array(next_states)).to(device)
    dones = torch.FloatTensor(np.array(dones)).view(-1, 1).to(device)
    model.train(states, actions, rewards, next_states, dones)
    scores.append(score)
    pbar.set_postfix(ep=episode, score=score, avg100=np.mean(scores[-100:]))
torch.save(model.actor.state_dict(),'../../model/cartpole-a.pt')
torch.save(model.critic.state_dict(),'../../model/cartpole-c.pt')
print(np.mean(scores[-100:]))
plt.plot(scores)
plt.show()

模型测试

这里选择 500 500 500轮测试,结果如下:

模型绝大部分时间可以保证到游戏结束才停止,即少部分时间才会出现波动,而采取 D Q N DQN DQN时可能仅能达到平均 300 300 300到成绩

相关推荐
望获linux6 小时前
【实时Linux实战系列】Linux 内核的实时组调度(Real-Time Group Scheduling)
java·linux·服务器·前端·数据库·人工智能·深度学习
程序员大雄学编程6 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
Dev7z6 小时前
河南特色农产品识别系统:让AI守护“中原味道”
人工智能
万俟淋曦6 小时前
【论文速递】2025年第28周(Jul-06-12)(Robotics/Embodied AI/LLM)
人工智能·ai·机器人·大模型·论文·robotics·具身智能
我是李武涯7 小时前
PyTorch DataLoader 高级用法
人工智能·pytorch·python
每月一号准时摆烂7 小时前
PS基本教学(三)——像素与分辨率的关系以及图片的格式
人工智能·计算机视觉
song150265372987 小时前
全自动视觉检测设备
人工智能·计算机视觉·视觉检测
2501_906519677 小时前
大语言模型的幻觉问题:机理、评估与抑制路径探析
人工智能
ZKNOW甄知科技7 小时前
客户案例 | 派克新材x甄知科技,构建全场景智能IT运维体系
大数据·运维·人工智能·科技·低代码·微服务·制造
视觉语言导航7 小时前
CoRL-2025 | SocialNav-SUB:用于社交机器人导航场景理解的视觉语言模型基准测试
人工智能·机器人·具身智能