【leetcode 力扣刷题】数学题之计算次幂//次方:快速幂

利用乘法求解次幂问题---快速幂

  • [50. Pow(x, n)](#50. Pow(x, n))
  • [372. 超级次方](#372. 超级次方)

50. Pow(x, n)

题目链接:50. Pow(x, n)

题目内容:

题目就是要求我们去实现计算x的n次方的功能函数,类似c++的power()函数。但是我们不能使用power()函数直接得到答案,那样这道题就失去了考察的意义。

前面提到乘法a*b可以看作是b个a相加,用加法来完成乘法;x的n次方,就是n个x相乘,那么同样可以用乘法来代替次幂计算,我们称之为快速幂 。比如5^7,就是7个5相乘,快速幂的过程如下:

第一轮是乘以5,第二轮乘以5*5,第三轮乘以(5*5)*(5*5),也就是每一轮乘的数都在加倍,这样就能够在log^n的时间复杂度内完成x^n的计算。代码实现如下(C++):

cpp 复制代码
class Solution {
public:
    double myPow(double x, int n) {
    	//先处理特殊情况
        if(x == 0) return 0.0;
        if(x == 1) return 1.0;
        if(n == 0) return 1.0;
        bool flage = false;
        long _n = n;
        //如果n是负数,x^n = 1/(x^|n|)
        if(_n < 0){
            flage = true;
            _n = -_n;
        }
        double ans = 1;
        double mul = x;
        //快速幂主体过程
        while(_n){  
            if(_n&1)  //如果n末位为1,就乘以mul
                ans *= mul;      
            mul *= mul; //mul翻倍
            _n >>= 1; //n右移一位
        }
        return flage ? 1.0/ans : ans; //判断是否需要变成倒数
    }
};

372. 超级次方

题目链接:372. 超级次方

题目内容:

看起来和上一题是差不多的,但是由于b是一个非常大的正整数,以数组形式给出[1,0,3,4]就表示1034【末位是个位,然后是十位,然后是百位,最前面的是最高位】。其中1 <= b.length <= 2000说明b可以达到10^1999的程度,根本没法用double、long long等数据类型来存储这么大的数,所以在运算过程中也不能直接把b转换成一个数或者每一位转换成一个数,需要其他方法:

将每一位b[i]的数值b[i]*10^(m-1-i)【其中m是b.length】分解成b[i]和10^(m-1-i)两部分,每次先求a^(10^(m-1-i))得到A,再求A^b[i]。a^(10^(m-1-i))随着i的减小越来越大,但是可以看作是上一轮的A^10。

由于每次次幂结果都要mod 1337,所以结果是不会溢出的,a^(10^(m-1-i))每一次用上一轮的A^10来表示就解决了b很大的问题。另外需要注意的是(a*b) mod k =( (a mod k) * (b mod k) ) mod k。

a^(10^(m-1-i))和A^b[i]以及A^10都用快速幂求解。快速幂过程中根据(a*b) mod k =( (a mod k) * (b mod k) ) mod k加上求模操作。代码如下(C++):

cpp 复制代码
class Solution {
public:
	//快速幂
    long quick_pow(int a, int n){
        int ans = 1;
        int mul = a;
        while(n){
            if(n&1)
            	//加上求模操作
                ans = ( (ans % 1337) * (mul % 1337)) % 1337;
            //mul也加上求模操作
            mul = ((mul % 1337) * (mul % 1337)) % 1337;
            n>>=1;
        }
        return ans;
    }
    int superPow(int a, vector<int>& b) {
        int ans = 1;        
        for(int j = b.size() - 1; j >= 0; j--){
            ans =( (ans % 1337) * (quick_pow(a,b[j]) % 1337) ) % 1337;
            //每次a都在上一次的基础上,变成其10次方
            a = quick_pow(a, 10);
        }
        return ans;
    }
};
相关推荐
艾莉丝努力练剑3 小时前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
_殊途4 小时前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
珊瑚里的鱼8 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
秋说9 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法
lifallen9 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove9 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
python_tty10 小时前
排序算法(二):插入排序
算法·排序算法
然我11 小时前
面试官:如何判断元素是否出现过?我:三种哈希方法任你选
前端·javascript·算法
F_D_Z11 小时前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
秋说11 小时前
【PTA数据结构 | C语言版】字符串插入操作(不限长)
c语言·数据结构·算法