Watermark 是怎么生成和传递的?

分析&回答

Watermark 介绍

Watermark 本质是时间戳,与业务数据一样无差别地传递下去,目的是衡量事件时间的进度(通知 Flink 触发事件时间相关的操作,例如窗口)。

  1. Watermark 是一个时间戳, 它表示小于该时间戳的事件都已经到达了。
  2. Watermark 一般情况在源位置产生(也可以在流图中的其它节点产生), 通过流图节点传播。
  3. Watermark 也是 StreamElement, 和普通数据一起在算子之间传递。
  4. Watermark 可以触发窗口计算, 时间戳为 Long.MAX_VALUE 表示算子后续没有任何数据。

Watermark 类型

flink 采用 WatermarkStrategy 设置自定义 Watermark 类型,WatermarkGenerator 是 Watermark 的基类。flink 实现了 Punctuated Watermarks 从事件获取事件的时间戳 、Periodic Watermarks 周期获取事件的时间戳

Watermark 的产生

  • Watermark 事件产生 PunctuatedAssigner根据事件属性eventTimestamp生成
  • Watermark 周期产生 结合算子 TimestampsAndWatermarksOperator 和 TimePeriodicWatermarkGenerator,分析 Watermark 的产生流程。如下图所示,横轴表示 processing time,圆形表示事件,圆形中的时间 t 表示事件时间,圆形落在横轴表示事件在算子中的处理,其中 Watermark 的产生周期为 60s 和允许延迟时间为 10s。以第一个周期 [0,60) 为例,获取事件中的最大事件时间 max,向下游发送 watermark(最大事件时间 - 允许延迟时间 - 1)。

Watermark 的传递

Watermark 的传递方式是广播,即广播方式发送到下游。Watermark 与业务数据一样,无差别地传递下去。

多并发的场景下

Watermark 是 source task 产生,经过 keyby 分组后触发窗口计算。

  • Watermark 要单调递增
  • ② 如果算子有多个上游(广播)即输入多个 Watermark(T),则该算子取最小 Watermark 即 min(Watermark(T1), Watermark(T2))

反思&扩展

Flink中的时间有三种类型,如下图所示:

  1. Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。
  2. Ingestion Time:是数据进入Flink的时间。
  3. Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。

对于迟到数据是怎么处理的

Flink中 WaterMark 和 Window 机制解决了流式数据的乱序问题,对于因为延迟而顺序有误的数据,可以根据eventTime进行业务处理,对于延迟的数据Flink也有自己的解决办法,主要的办法是给定一个允许延迟的时间,在该时间范围内仍可以接受处理延迟数据:

  • 设置允许延迟的时间是通过allowedLateness(lateness: Time)设置
  • 保存延迟数据则是通过sideOutputLateData(outputTag: OutputTag[T])保存
  • 获取延迟数据是通过DataStream.getSideOutput(tag: OutputTag[X])获取

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

相关推荐
铭毅天下14 小时前
Codebuddy 实现:云端 Elasticsearch 到 本地 Easysearch 跨集群迁移 Python 小工具
大数据·elasticsearch·搜索引擎·全文检索
青云交14 小时前
Java 大视界 -- Java 大数据在智慧交通自动驾驶仿真与测试数据处理中的应用
java·大数据·自动驾驶·数据存储·算法优化·智慧交通·测试数据处理
观远数据14 小时前
A Blueberry 签约观远数据,观远BI以一站式现代化驱动服饰企业新增长
大数据·数据库·人工智能·数据分析
缘华工业智维21 小时前
工业设备预测性维护:能源成本降低的“隐藏钥匙”?
大数据·网络·人工智能
NewsMash21 小时前
马来西亚代表团到访愿景娱乐 共探TikTok直播电商增长新路径
大数据·娱乐
凯禾瑞华养老实训室1 天前
聚焦生活照护能力培育:老年生活照护实训室建设清单的模块设计与资源整合
大数据·人工智能·科技·ar·vr·智慧养老·智慧健康养老服务与管理
Q26433650231 天前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
计算机毕业设计木哥1 天前
计算机毕设选题推荐:基于Hadoop和Python的游戏销售大数据可视化分析系统
大数据·开发语言·hadoop·python·信息可视化·spark·课程设计
Lansonli1 天前
大数据Spark(六十八):Transformation转换算子所有Join操作和union
大数据·分布式·spark