文献阅读:Semantic Communications for Speech Signals

目录


论文简介

  • 作者

    Zhenzi Weng

    Zhijin Qin

    Geoffrey Ye Liy

  • 发表期刊or会议

    《ICC》

  • 发表时间

    2021.6


动机:为什么作者想要解决这个问题?

  • 对语音信号传输的语义通信的研究没有开展
  • 论文里提到:分块设计系统已被证明是次优的,传统的线性信号处理算法无法捕获实际信道中的许多缺陷和非线性

贡献:作者在这篇论文中完成了什么工作(创新点)?

  • 首次提出了语音信号语义通信系统DeepSC-S,将整个收发器视为两个深度神经网络(speech encoder------注意力机制;channel encoder------CNN),并联合设计语音编码和信道编码来处理信源失真和信道效应。
  • DeepSC-S基于squeeze and excitation (SE) networks (就是找了一个那时候比较火的网络罢了)
  • 通过在固定衰落信道和信噪比下训练 DeepSC-S,然后在动态信道(AWGN,瑞丽,莱斯)环境下测试,所提出的 DeepSC-S 具有高度鲁棒性,无需网络调整和重新训练(这太扯了)

规划:他们如何完成工作?

  • 整体框架


    这结构真没什么好说的,需要的时候看论文II和III吧(和DeepSC一个套路,就在这encoder,decoder的)

  • 损失函数

    采用均方误差(MSE)作为损失函数,测量 s s s和 s ^ \hat s s^之间的差异
    L M S E ( θ T , θ R ) = 1 W ∑ w = 1 W ( s w − s ^ w ) 2 \mathcal{L}{M S E}\left(\boldsymbol{\theta}^{\mathcal{T}}, \boldsymbol{\theta}^{\mathcal{R}}\right)=\frac{1}{W} \sum{w=1}^W\left(s_w-\widehat{s}_w\right)^2 LMSE(θT,θR)=W1w=1∑W(sw−s w)2

  • 误差度量

    采用信号失真比(SDR)来测量 s s s和 s ^ \hat s s^之间的L2误差:
    S D R = 10 log ⁡ 10 ( ∥ s ∥ 2 ∥ s − s ^ ∥ 2 ) . S D R=10 \log _{10}\left(\frac{\|\boldsymbol{s}\|^2}{\|\boldsymbol{s}-\widehat{\boldsymbol{s}}\|^2}\right) . SDR=10log10(∥s−s ∥2∥s∥2).


自己的看法(作者如何得到的创新思路)

这篇论文,一言难尽,大概就是找一个新场景(speech),再找一个那时候流行的网络结构(attention),然后套上语义的壳,就是一篇ICC 😭
选择大于努力


相关推荐
特立独行的猫a31 分钟前
HarmonyOS 【诗韵悠然】AI古诗词赏析APP开发实战从零到一系列(一、开篇,项目介绍)
人工智能·华为·harmonyos·古诗词
yu4106212 小时前
2025年中期大语言模型实力深度剖析
人工智能·语言模型·自然语言处理
feng995204 小时前
技术伦理双轨认证如何重构AI工程师能力评估体系——基于AAIA框架的技术解析与行业实证研究
人工智能·aaif·aaia·iaaai
2301_776681654 小时前
【用「概率思维」重新理解生活】
开发语言·人工智能·自然语言处理
蜡笔小新..4 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
富唯智能5 小时前
转运机器人可以绕障吗?
人工智能·智能机器人·转运机器人
视觉语言导航6 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux6 小时前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI6 小时前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison6 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络