OpenCV(十七):拉普拉斯图像金字塔

1.拉普拉斯图像金字塔原理

拉普拉斯图像金字塔是一种多尺度图像表示方法,通过对高斯金字塔进行差分运算得到。它能够提供图像在不同尺度上的细节信息,常用于图像处理任务如图像增强、边缘检测等。

下面是拉普拉斯图像金字塔的原理和步骤:

  1. 构建高斯金字塔:首先,使用高斯模糊和下采样操作构建高斯金字塔。高斯金字塔是由一系列不同分辨率的图像层级组成,每个层级都是通过对上一层级的图像进行高斯模糊和下采样得到的。

  2. 构建拉普拉斯金字塔:从高斯金字塔的顶层开始,通过将下一层级的图像上采样并与当前层级的图像进行减法运算来构建拉普拉斯金字塔。

算法如下:

L_i = G_i - Resize(Upsample(G_i+1))

其中,L_i是拉普拉斯金字塔的第i层,G_i是高斯金字塔的第i层,Upsample()是上采样函数,使用插值技术将图像的尺寸放大为原来的两倍。

  1. 重复步骤2:对于拉普拉斯金字塔的每一层,继续进行上采样和差分运算,得到更精细的细节信息。最底层的金字塔层级是原始图像的低频信息。

最终,拉普拉斯金字塔包含了原始图像在不同尺度上的细节信息,较高层级的图像包含了较高频的细节,而较低层级的图像包含了较低频的细节。从金字塔的最底层开始,通过将每个层级的图像与其上一层级的上采样图像相加,可以还原原始图像。

2.拉普拉斯图像金字塔实现

在OpenCV中,可以使用cv::pyrDown()和cv::pyrUp()函数构建高斯金字塔,并通过差分运算得到拉普拉斯金字塔。拉普拉斯金字塔在多尺度图像处理中具有很大的应用,如图像融合、纹理合成、压缩等。

  1. cv::pyrDown()函数:

    • 函数原型:void pyrDown(InputArray src, OutputArray dst, const Size& dstsize = Size(), int borderType = BORDER_DEFAULT)

    • 参数说明:

      • src:输入图像,可以是单通道或多通道的图像,数据类型为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。

      • dst:输出图像,下采样后的图像。

      • dstsize:可选参数,输出图像的尺寸,默认情况下,输出图像的尺寸为输入图像尺寸的一半,也可以手动指定输出图像的尺寸。

      • borderType:可选参数,用于边缘填充的类型,默认为 BORDER_DEFAULT。

  2. cv::pyrUp()函数:

    • 函数原型:void pyrUp(InputArray src, OutputArray dst, const Size& dstsize = Size(), int borderType = BORDER_DEFAULT)

    • 参数说明:

      • src:输入图像,可以是单通道或多通道的图像,数据类型为 CV_8U、CV_16U、CV_16S、CV_32F 或 CV_64F。

      • dst:输出图像,上采样后的图像。

      • dstsize:可选参数,输出图像的尺寸,默认情况下,输出图像的尺寸为输入图像尺寸的两倍,也可以手动指定输出图像的尺寸。

      • borderType:可选参数,用于边缘填充的类型,默认为 BORDER_DEFAULT。

示例:

复制代码
    // 构建高斯图像金字塔
    std::vector<cv::Mat> Guass;
    int level=3;
    Guass.push_back(image);

   for(int i=0;i<level;i++){
       Mat guass;
        cv::pyrDown(Guass[i], guass);
       Guass.push_back(guass);
    }
   //构建拉普拉斯金字塔
   vector<Mat> Lap;
    for(int i=Guass.size()-1;i>0;i--){
        Mat lap,upGuass;
        if(i==Guass.size()-1){
            Mat down,up;
            pyrDown(Guass[i],down);
            pyrUp(down,up);
            lap=Guass[i]-up;
            Lap.push_back(lap);
        }
        pyrUp(Guass[i], upGuass);
        lap = Guass[i-1] - upGuass;
        Lap.push_back(lap);
    }
相关推荐
念风零壹2 小时前
C++ 内存避坑指南:如何用移动语义和智能指针解决“深拷贝”与“内存泄漏”
c++
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144872 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile2 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥2 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7252 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h3 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路3 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿3 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能