数学建模:灰色预测模型

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

数学建模:灰色预测模型

文章目录

灰色预测

三个基本方法:

累加数列:计算一阶累加生成数列

x ( 1 ) ( k ) = ∑ i = 1 k x ( 0 ) ( i ) , k = 1 , 2 , ⋯   , n , x^{(1)}(k)=\sum_{i=1}^kx^{(0)}(i),k=1,2,\cdots,n, x(1)(k)=i=1∑kx(0)(i),k=1,2,⋯,n,


累减数列:计算一阶累减生成数列

x ( 0 ) ( k ) = x ( 1 ) ( k ) − x ( 1 ) ( k − 1 ) , k = 2 , 3 , ⋯   , n , x^{(0)}(k)=x^{(1)}(k)-x^{(1)}(k-1),k=2,3,\cdots,n, x(0)(k)=x(1)(k)−x(1)(k−1),k=2,3,⋯,n,


加权累加 :计算一阶等权邻接生成数,图片描述有误,此处计算的是一次累加的加权邻值生成

z ( 0 ) ( k ) = 0.5 x ( 1 ) ( k ) + 0.5 x ( 1 ) ( k − 1 ) , k = 2 , 3 , ⋯   , n , z^{(0)}(k)=0.5x^{(1)}(k)+0.5x^{(1)}(k-1),k=2,3,\cdots,n, z(0)(k)=0.5x(1)(k)+0.5x(1)(k−1),k=2,3,⋯,n,


算法步骤

  1. 进行级比检验,检查是否满足建立微分方程的前提条件。

λ ( k ) = x ( 0 ) ( k − 1 ) x ( 0 ) ( k ) \lambda(k)=\frac{x^{(0)}(k-1)}{x^{(0)}(k)} λ(k)=x(0)(k)x(0)(k−1)

  1. 对原数据做一次累加,计算加权邻值生成数
  2. 构造数据矩阵 B B B ,与数据向量 Y Y Y

B = [ − 1 2 ( x ( 1 ) ( 1 ) + x ( 1 ) ( 2 ) − 1 2 ( x ( 1 ) ( 2 ) + x ( 1 ) ( 3 ) ) 1 ⋮ ⋮ − 1 2 ( x ( 1 ) ( n − 1 ) + x ( 1 ) ( n ) ) ] , Y = [ x ( 0 ) ( 2 ) x ( 0 ) ( 3 ) ⋮ x ( 0 ) ( n ) ] B~=\left[\begin{array}{ccccc}-\dfrac{1}{2}\big(x^{(1)}\big(1\big)+x^{(1)}\big(&2\big)&\\-\dfrac{1}{2}\big(x^{(1)}\big(2\big)+x^{(1)}\big(&3\big)&\big)&1\\&\vdots&&\vdots\\-\dfrac{1}{2}\big(x^{(1)}\big(n-1\big)+x^{(1)}\big(&n\big)&\big)&\end{array}\right],Y~=\left[\begin{array}{ccc}x^{(0)}\big(&2\big)\\x^{(0)}\big(&3\big)\\\vdots\\x^{(0)}\big(&n\big)\end{array}\right] B = −21(x(1)(1)+x(1)(−21(x(1)(2)+x(1)(−21(x(1)(n−1)+x(1)(2)3)⋮n)))1⋮ ,Y = x(0)(x(0)(⋮x(0)(2)3)n)

  1. 计算 a a a 与 b b b 的值

u ^ = ( a ^ , b ^ ) T = ( B T ⋅ B ) − 1 B T Y \hat{u}=(\hat{a},\hat{b})^T=(B^T\cdot B)^{-1}B^TY u^=(a^,b^)T=(BT⋅B)−1BTY

  1. 构建模型

x ( 1 ) ( t ) = ( x ( 0 ) ( 1 ) − b a ) e − a ( t − 1 ) + b a . x^{(1)}(t)=(x^{(0)}(1)-\frac ba)e^{-a(t-1)}+\frac ba. x(1)(t)=(x(0)(1)−ab)e−a(t−1)+ab.

  1. 计算生成模型值 x ^ ( 1 ) ( k ) \hat{x}^{(1)}(k) x^(1)(k) 和模型还原值 x ^ ( 0 ) ( k ) \hat{x}^{(0)}(k) x^(0)(k) 并且带入预测

x ^ ( 0 ) ( k ) = x ^ ( 1 ) ( k ) − x ^ ( 1 ) ( k − 1 ) \hat{x}^{(0)}(k)=\hat{x}^{(1)}(k)-\hat{x}^{(1)}(k-1) x^(0)(k)=x^(1)(k)−x^(1)(k−1)

  1. 检验预测值

代码实现

matlab 复制代码
%95至04年数据
clc;clear;
data = [174 179 183 189 207 234 220.5 256 270 285];
n = length(data);
 
%% 级比检验通过
check = [];
for k = 2:n
    lambda(k) = data(k-1)/data(k);
    if (exp(-2/(n+1))<lambda(k))&&(lambda(k)<exp(2/(n+1)))
        check(end+1) = 1;
    else check(end+1) = 0;
    end
end 
 
%% 计算累加数列
X1 = cumsum(data);

%% 计算加权
for i=2:n
    z(i) = 0.5*(X1(i-1)+X1(i));
end
 
%% 数据矩阵B及数据向量Y
Y = data(2:n)';
B = [-z(2:n)',ones(n-1,1)];
u = (B'*B)\B'*Y;
% u = B\Y; 表示B的逆 乘以 Y
a = u(1,1);
b = u(2,1);
 
%% 构造模型并且带入预测值
% 生成预测一次累加数列
f_X1 = [];
f_X0 = [];
for k=1:n-1
    f_X1(1)=data(1);
    f_X1(k+1) = (data(1)-b/a)*exp(-a*k) + b/a;
end
% 前缀和反推原始数据
for k=2:n
    f_X0(1)=data(1);
    f_X0(k)=f_X1(k)-f_X1(k-1);
end
 
%% 残差检验 与 级比偏差值检验
for k=1:n-1
    sigma(k)=abs((data(k)-f_X0(k))/data(k));
    rho(k+1)=abs(1-((1-0.5*a)*lambda(k+1))/(1+0.5*a));
end

%% 预测下n个值
test = input('nums:');
nums = 5;
n=n+test;
f_f_X1 = [];
f_f_X0 = [];
for k=1:n-1
    f_f_X1(1)=data(1);
    f_f_X1(k+1) = (data(1)-b/a)*exp(-a*k) + b/a;
end
for k=2:n
    f_f_X0(1)=data(1);
    f_f_X0(k)=f_f_X1(k)-f_f_X1(k-1);
end

%% 绘图
xAxis = 1995:2004;
xAxisPredict = 1995:1995+n-1; 
h = plot(xAxis,data,'o',xAxisPredict,f_f_X0,'-');
set(gca, 'XScale', 'log', 'YScale', 'log');
set(h,'LineWidth',1.5);
相关推荐
杨小码不BUG1 天前
灯海寻踪:开灯问题的C++精妙解法(洛谷P1161)
c++·算法·数学建模·位运算·浮点数·信奥赛·csp-j/s
杨小码不BUG1 天前
Davor的北极探险资金筹集:数学建模与算法优化(洛谷P4956)
c++·算法·数学建模·信奥赛·csp-j/s
MoRanzhi12033 天前
12. Pandas 数据合并与拼接(concat 与 merge)
数据库·人工智能·python·数学建模·矩阵·数据分析·pandas
MoRanzhi12033 天前
11. Pandas 数据分类与区间分组(cut 与 qcut)
人工智能·python·机器学习·数学建模·分类·数据挖掘·pandas
Vizio<3 天前
ERT中正问题和逆问题的传统数学推导
学习·数学建模·机器人·触觉传感器
民乐团扒谱机5 天前
PCA 主成分分析:数据世界的 “旅行清单整理师”—— 从 30 维杂乱到 2 维清晰的诗意降维
大数据·数学建模·matlab·pca·主成分分析·数据处理·降维
nju_spy6 天前
2023 美赛C Predicting Wordle Results(上)
人工智能·机器学习·数学建模·数据挖掘·arima·时间序列预测·相关性分析
数模加油站6 天前
最新R(4.4.1)及R-studio保姆级安装配置详细教程及常见问题解答
开发语言·windows·数学建模·r语言
赤壁淘沙9 天前
机器人控制利器:MPC入门与实践解析
数学建模·机器人
less is more_09309 天前
风力发电机输出功率模型综述
笔记·学习·数学建模