【pytorch】tensorboard + transforms的使用

一、tensorboard的使用
  1. 加载一张图片转化为tensor类型,并通过tenboard可视化
python 复制代码
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

img_path = "dataset/train/ants_image/0013035.jpg"

img = Image.open(img_path)

#print(img)
writer = SummaryWriter('logs')

tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)

writer.add_image("Tesnor_img",tensor_img)

#print(tensor_img)

writer.close()


#在Terminal中输入 tensorboard --logdir=logs
二、transforms的常用函数

细心的小伙伴已发现了,上面已经使用了transforms了,我们在添加图片时,用到了ToTensor()这个函数。

ToTensor()函数:

将一个PIL类型转换成tensor类型;

python 复制代码
#totensor
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("to_Tesnor",tensor_img)
print(tensor_img)

Normalize() 函数:

用于归一化,使他的范数或者数值在一定的范围。

python 复制代码
#normalize
trnas_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trnas_norm(tensor_img)
print(img_norm[0][0][0])

writer.add_image("normalize",img_norm)

Resize()函数:

用来调整数组大小。

python 复制代码
#resize
print(img)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)

img_resize = tensor_trans(img_resize)

writer.add_image("resize",img_resize,0)
print(img_resize)

Compose()函数:

简单来说就是将各种操作就行联合起来进行操作,注意操作顺序。

python 复制代码
#compose
trans_resize_2 = transforms.Resize(512)

trans_compose = transforms.Compose([trans_resize_2,tensor_trans])
img_resize_2 = trans_compose(img)
writer.add_image("resize",img_resize_2,1)

RandomCrop()函数:

随机裁剪函数,看效果,这里只展示了一步。

python 复制代码
#randomcrop
trans_random = transforms.RandomCrop(128)

trans_compose_2 = transforms.Compose([trans_random,tensor_trans])

for i in range(10):
    img_crop = trans_compose_2(img)
    writer.add_image("Randomcrop",img_crop,i)


writer.close()

tensorboard配合transforms就是pytorch学习中的两大利器

相关推荐
恣逍信点17 小时前
《凌微经 · 理悖相涵》第六章 理悖相涵——关系构型之模因
人工智能·科技·程序人生·生活·交友·哲学
晚霞的不甘17 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
小程故事多_8017 小时前
Agent Infra核心技术解析:Sandbox sandbox技术原理、选型逻辑与主流方案全景
java·开发语言·人工智能·aigc
陈天伟教授17 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
独好紫罗兰18 小时前
对python的再认识-基于数据结构进行-a006-元组-拓展
开发语言·数据结构·python
Dfreedom.18 小时前
图像直方图完全解析:从原理到实战应用
图像处理·python·opencv·直方图·直方图均衡化
人机与认知实验室18 小时前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)18 小时前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
却道天凉_好个秋18 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
铉铉这波能秀18 小时前
LeetCode Hot100数据结构背景知识之集合(Set)Python2026新版
数据结构·python·算法·leetcode·哈希算法