opencv识别一张图片的多个红框,并截取红框的内容

需求

需要获取图片的红框的内容,实体的图片我就不放了

获取红框

先截取获得图片的多个轮廓

复制代码
import cv2  
import numpy as np  
  
# 加载图像并转换为灰度图像  
image = cv2.imread('image6.jpg')  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
  
# 应用高斯模糊以减少噪声  
blur = cv2.GaussianBlur(gray, (5, 5), 0)  
  
# 应用HSV颜色空间转换  
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)  
lower_red = np.array([0, 50, 50])  
upper_red = np.array([10, 255, 255])  
mask = cv2.inRange(hsv, lower_red, upper_red)  
  
# 应用膨胀操作来放大边框内的内容和边框  
kernel = np.ones((5,5),np.uint8)  
dilated = cv2.dilate(mask,kernel,iterations = 1)  
  
# 获取边界框坐标  
contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  
  
# 遍历每个轮廓并找到最大的红色边框  
max_contour = None  
max_area = 0  
for contour in contours:  
    area = cv2.contourArea(contour)  
    # if area > max_area:  
    #     max_contour = contour  
    #     max_area = area  
    x, y, w, h = cv2.boundingRect(contour)  
  
# 裁剪图像以显示边界框内的内容及其周围10px内容  
    crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
    
    # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    #cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
    cv2.imwrite(f'red_border_{x}_{y}_{w}_{h}.jpg', crop_image)  

    cv2.waitKey(0)  
    cv2.destroyAllWindows()
  
# 获取最大轮廓的边界框坐标  
# x, y, w, h = cv2.boundingRect(max_contour)  
  
# # 裁剪图像以显示边界框内的内容及其周围10px内容  
# crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
  
# # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
  
# cv2.waitKey(0)  
# cv2.destroyAllWindows()

识别红框

复制代码
import cv2
import numpy as np

# 加载图像
image = cv2.imread('red_border_1038_1886_6_6.jpg')

# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化图像
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 找到图像中的轮廓
contours, _ = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历每个轮廓,判断是否是闭合的圆
for contour in contours:
    # 进行轮廓近似,获取近似的多边形轮廓
    epsilon = 0.01 * cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, epsilon, True)

    # 计算近似轮廓的周长
    approx_length = cv2.arcLength(approx, True)

    # 计算原始轮廓的周长
    contour_length = cv2.arcLength(contour, True)

    # 判断近似轮廓的周长是否接近于原始轮廓的周长
    if approx_length >= 0.9 * contour_length:
        # 绘制闭合的圆
        cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
        cv2.putText(image, 'Closed Circle', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
        print("存在")

# 显示结果图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
算力魔方AIPC9 分钟前
Spec-Kit+Copilot打造AI规格驱动开发
人工智能·驱动开发·copilot
拓端研究室28 分钟前
视频讲解|Python遗传算法GA在车辆路径规划VRP数据优化中的应用
开发语言·人工智能·r语言
mwq3012338 分钟前
Transformer:多头自注意力机制详解 (PyTorch 实现)
人工智能
西柚小萌新40 分钟前
【深入浅出PyTorch】--7.2.PyTorch可视化2
人工智能·pytorch·python
Psycho_MrZhang1 小时前
机器学习使用GPU
人工智能·机器学习
用户5191495848451 小时前
利用配置错误的IAM策略窃取云函数访问令牌[GCP]
人工智能·aigc
中杯可乐多加冰1 小时前
国产OCR模型荣登HF榜首——PaddleOCR-VL技术详解与多场景实测
人工智能
王国强20091 小时前
人工智能发展报告:技术进展与产业分析(Kimi生成)
人工智能
算家计算1 小时前
阿里最新开源!轻量级视觉模型Qwen3-VL-4B&8B-Instruct本地部署教程:小参数媲美顶尖模型
人工智能·开源
赋范大模型技术圈1 小时前
11G显存DPO强化学习微调实战
人工智能·强化学习