opencv识别一张图片的多个红框,并截取红框的内容

需求

需要获取图片的红框的内容,实体的图片我就不放了

获取红框

先截取获得图片的多个轮廓

import cv2  
import numpy as np  
  
# 加载图像并转换为灰度图像  
image = cv2.imread('image6.jpg')  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
  
# 应用高斯模糊以减少噪声  
blur = cv2.GaussianBlur(gray, (5, 5), 0)  
  
# 应用HSV颜色空间转换  
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)  
lower_red = np.array([0, 50, 50])  
upper_red = np.array([10, 255, 255])  
mask = cv2.inRange(hsv, lower_red, upper_red)  
  
# 应用膨胀操作来放大边框内的内容和边框  
kernel = np.ones((5,5),np.uint8)  
dilated = cv2.dilate(mask,kernel,iterations = 1)  
  
# 获取边界框坐标  
contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  
  
# 遍历每个轮廓并找到最大的红色边框  
max_contour = None  
max_area = 0  
for contour in contours:  
    area = cv2.contourArea(contour)  
    # if area > max_area:  
    #     max_contour = contour  
    #     max_area = area  
    x, y, w, h = cv2.boundingRect(contour)  
  
# 裁剪图像以显示边界框内的内容及其周围10px内容  
    crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
    
    # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    #cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
    cv2.imwrite(f'red_border_{x}_{y}_{w}_{h}.jpg', crop_image)  

    cv2.waitKey(0)  
    cv2.destroyAllWindows()
  
# 获取最大轮廓的边界框坐标  
# x, y, w, h = cv2.boundingRect(max_contour)  
  
# # 裁剪图像以显示边界框内的内容及其周围10px内容  
# crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
  
# # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
  
# cv2.waitKey(0)  
# cv2.destroyAllWindows()

识别红框

import cv2
import numpy as np

# 加载图像
image = cv2.imread('red_border_1038_1886_6_6.jpg')

# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化图像
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 找到图像中的轮廓
contours, _ = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历每个轮廓,判断是否是闭合的圆
for contour in contours:
    # 进行轮廓近似,获取近似的多边形轮廓
    epsilon = 0.01 * cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, epsilon, True)

    # 计算近似轮廓的周长
    approx_length = cv2.arcLength(approx, True)

    # 计算原始轮廓的周长
    contour_length = cv2.arcLength(contour, True)

    # 判断近似轮廓的周长是否接近于原始轮廓的周长
    if approx_length >= 0.9 * contour_length:
        # 绘制闭合的圆
        cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
        cv2.putText(image, 'Closed Circle', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
        print("存在")

# 显示结果图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
学术头条17 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典18 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui21 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
孙同学要努力26 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
喵~来学编程啦1 小时前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司1 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表2 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_2 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141653 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141653 小时前
Ascend C的编程模型
人工智能