opencv识别一张图片的多个红框,并截取红框的内容

需求

需要获取图片的红框的内容,实体的图片我就不放了

获取红框

先截取获得图片的多个轮廓

复制代码
import cv2  
import numpy as np  
  
# 加载图像并转换为灰度图像  
image = cv2.imread('image6.jpg')  
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
  
# 应用高斯模糊以减少噪声  
blur = cv2.GaussianBlur(gray, (5, 5), 0)  
  
# 应用HSV颜色空间转换  
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)  
lower_red = np.array([0, 50, 50])  
upper_red = np.array([10, 255, 255])  
mask = cv2.inRange(hsv, lower_red, upper_red)  
  
# 应用膨胀操作来放大边框内的内容和边框  
kernel = np.ones((5,5),np.uint8)  
dilated = cv2.dilate(mask,kernel,iterations = 1)  
  
# 获取边界框坐标  
contours, hierarchy = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)  
  
# 遍历每个轮廓并找到最大的红色边框  
max_contour = None  
max_area = 0  
for contour in contours:  
    area = cv2.contourArea(contour)  
    # if area > max_area:  
    #     max_contour = contour  
    #     max_area = area  
    x, y, w, h = cv2.boundingRect(contour)  
  
# 裁剪图像以显示边界框内的内容及其周围10px内容  
    crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
    
    # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
    #cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
    cv2.imwrite(f'red_border_{x}_{y}_{w}_{h}.jpg', crop_image)  

    cv2.waitKey(0)  
    cv2.destroyAllWindows()
  
# 获取最大轮廓的边界框坐标  
# x, y, w, h = cv2.boundingRect(max_contour)  
  
# # 裁剪图像以显示边界框内的内容及其周围10px内容  
# crop_image = image[max(y-10, 0):min(y+h+10, image.shape[0]), max(x-10, 0):min(x+w+10, image.shape[1])]  
  
# # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.rectangle(crop_image, (max(x-10, 0), max(y-10, 0)), (min(x+w+10, image.shape[1]), min(y+h+10, image.shape[0])), (0, 0, 255), 2)  # 在裁剪后的图像上绘制红色矩形框以突出显示边界框内的内容及其周围10px内容  
# cv2.imshow('Content with Border and Surrounding Area', crop_image)  # 显示带有红色边框和周围10px内容的裁剪后的图像  
  
# cv2.waitKey(0)  
# cv2.destroyAllWindows()

识别红框

复制代码
import cv2
import numpy as np

# 加载图像
image = cv2.imread('red_border_1038_1886_6_6.jpg')

# 将图像转换为灰度
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 二值化图像
_, threshold = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 找到图像中的轮廓
contours, _ = cv2.findContours(threshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历每个轮廓,判断是否是闭合的圆
for contour in contours:
    # 进行轮廓近似,获取近似的多边形轮廓
    epsilon = 0.01 * cv2.arcLength(contour, True)
    approx = cv2.approxPolyDP(contour, epsilon, True)

    # 计算近似轮廓的周长
    approx_length = cv2.arcLength(approx, True)

    # 计算原始轮廓的周长
    contour_length = cv2.arcLength(contour, True)

    # 判断近似轮廓的周长是否接近于原始轮廓的周长
    if approx_length >= 0.9 * contour_length:
        # 绘制闭合的圆
        cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
        cv2.putText(image, 'Closed Circle', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
        print("存在")

# 显示结果图像
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
相关推荐
边缘计算社区43 分钟前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊1 小时前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse1 小时前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao1 小时前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能
追逐☞2 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习
winner88812 小时前
对抗学习:机器学习里的 “零和博弈”,如何实现 “双赢”?
人工智能·机器学习·gan·对抗学习
Elastic 中国社区官方博客2 小时前
使用 LangGraph 和 Elasticsearch 构建强大的 RAG 工作流
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
娃娃略2 小时前
【AI模型学习】双流网络——更强大的网络设计
网络·人工智能·pytorch·python·神经网络·学习