Direct3D光照

光照的组成

环境光:这种类型的光经其他表面反射到达物体表面,并照亮整个场景,要想以较低代价粗略模拟这类反射光,环境光是一个很好的选择

漫射光:这种类型光沿着特定的方向传播。当它到达某一表面时,将沿着各个方向均匀反射,无论从哪个方位观察,表面亮度均相同,所以采用该模型时无须考虑观察者的位置,这样,漫射光方程中仅需考虑光传播的方向以及表面朝向,从一个光源发出的光一般都是这种类型的。

镜面光:这种类型的光沿特定方向传播,当此类光到达一个表面时,将严格地沿着另一个方向反射,从而形成只能在一定角度范围内才能观察到的高亮度照射,所以在镜面光照方程中不仅需要考虑光线的入射方向和图元的表面朝向,还需要考虑观察点的位置。镜面光可用于模拟物体上的高光点,例如当光线照射到一个抛光的表面所形成的高亮照射。

镜面光比其他类型光计算量大,因此Direct3D提供了开关选项,默认状态下Direct不进行镜面反射计算,如果想启用镜面光,必须调用接口进行设置

cpp 复制代码
Device->SetRenderState(D3DRS_SPECULARENABLE, true);

每种类型的光都可用结构D3DCOLORVALUE或者D3DXCOLOR来表示,描述光线的颜色时,D3DXCOLOR类中的Alpha值都将被忽略

cpp 复制代码
D3DXCOLOR redAmbient(1.0f, 0.0f, 0.0f, 1.0f);
D3DXCOLOR blueDiffuse(0.0f, 0.0f, 1.0f, 1.0f);
D3DXCOLOR whiteSpecular(1.0f, 1.0f, 1.0f, 1.0f);

材质

现实世界中,我们所观察到的物体的颜色是由该物体所反射的光的颜色决定的,例如一个纯红色的球体反射了全部的红色入射光,并吸收了所有非红色的光,所以呈现为红色。当一个物体吸收了所有的光时,便呈现为黑色,如果一个物体能够100%地反射红色光、绿色光、蓝色光,它将呈现为白色,Direct3D通过定义物体的材质来模拟同样的现象,材质允许我们定义物体表面对各种颜色光的反射比例,材质用结构D3DMATERIAL9来表示。

cpp 复制代码
typedef struct D3DMATERIAL9 {
    D3DCOLORVALUE   Diffuse;  
    D3DCOLORVALUE   Ambient;  
    D3DCOLORVALUE   Specular; 
    D3DCOLORVALUE   Emissive; 
    float           Power;    
} D3DMATERIAL9;

Diffuse :指定材质对漫射光的反着率
Ambient :指定材质对环境光的反射率
Specular :指定材质对镜面光的反射率
Emissive :该分量用于增强物体的亮度,使之看起来好像可以自己发光
Power:指定镜面高光点的锐度,该值越大,高光点的锐度越大

cpp 复制代码
//只反射红色光
D3DMATERIAL9 red;
::ZeroMemory(&red, sizeof(red));
red.Diffuse = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Ambient= D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Specular = D3DXCOLOR(1.0f, 0.0f, 0.0f, 1.0f);
red.Emissive = D3DXCOLOR(0.0f, 0.0f, 0.0f, 1.0f);
red.Power = 5.0f;

设置材质接口SetMaterial

cpp 复制代码
D3DMATERIAL9 blueMaterial;
Device->SetMaterial(&blueMaterial);
//draw...

顶点法线

顶点法线描述的是构成多边形的各个顶点的法线,Direct3D需要知道顶点的法线方向,以确定光线到达表面时的入射角,由于光照计算是对每个顶点进行的,所以Direct3D需要知道表面在每个顶点处的局部朝向(法线方向),描述一个顶点法线需要修改顶点结构

cpp 复制代码
struct Vertex
{
	float _x, _y, _z;
	float _nx, _ny, _nz;
	static const DWORD FVF;
};
const DWORD Vertex::FVF = D3DFVF_XYZ | D3DFVF_NORMAL;

计算三角形三个顶点的法线,可由计算该面的法向量得到,首先计算位于三角形平面内的俩个向量

cpp 复制代码
void ComputeNormal(D3DXVECTOR3* p0, D3DXVECTOR3* p1, D3DXVECTOR3* p2, D3DXVECTOR3* out)
{
	D3DXVECTOR3 u = *p1 - *p0;
	D3DXVECTOR3 v = *p2 - *p0;
	D3DXVec3Cross(out, &u, &v);
	D3DXVec3Normalize(out, out);
}

当用三角形单元逼近表示曲面时,将面片法向量作为构成该面片的顶点法向量不可能产生很平滑的效果,一种更好的求取顶点法向量的方法是计算法向量均值,我们需要求出共享点v的所有三角形的面法向量,然后将这些法向量相加后除以个数进行平均。

在变换过程中,顶点法线有可能不再是规范的所以最好的方法是在变换完成后,通过设置绘制状态来重新规范化

cpp 复制代码
Device->SetRenderState(D3DRS_NORMALIZENORMALS, true);
相关推荐
二狗哈2 小时前
Cesium快速入门19:Entity折线材质
3d·webgl·材质·cesium·地图可视化
kk哥88993 小时前
从建模到渲染:C4D 2025 全流程 3D 创作提升最新版本下载安装步骤
3d
zl_vslam3 小时前
SLAM中的非线性优-3D图优化之相对位姿g2o::EdgeSE3Expmap(十)
人工智能·算法·计算机视觉·3d
二狗哈3 小时前
Cesium快速入门17:与entity和primitive交互
开发语言·前端·javascript·3d·webgl·cesium·地图可视化
杀生丸学AI16 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
东芝、铠侠总代136100683931 天前
为高精度3D打印打造高性价比的——东芝TB67S579FTG
3d·步进电机
拉姆哥的小屋1 天前
突破传统PINN瓶颈:基于LSTM-格林函数的3D瞬态温度场智能预测新方法
人工智能·3d·lstm
二狗哈1 天前
Cesium快速入门16:Primitive多个实体与颜色修改
3d·webgl·cesium·地图可视化
CG_MAGIC1 天前
云渲染时代的选择:Blender与KeyShot对比及指南
3d·blender·效果图渲染·建模教程·渲云渲染·keyshot
song5011 天前
鸿蒙 Flutter CI/CD 进阶:Jenkins + 鸿蒙打包自动化流程
分布式·python·flutter·3d·ci/cd·分类