【LeetCode算法系列题解】第61~65题

CONTENTS

    • [LeetCode 61. 旋转链表(中等)](#LeetCode 61. 旋转链表(中等))
    • [LeetCode 62. 不同路径(中等)](#LeetCode 62. 不同路径(中等))
    • [LeetCode 63. 不同路径 II(中等)](#LeetCode 63. 不同路径 II(中等))
    • [LeetCode 64. 最小路径和(中等)](#LeetCode 64. 最小路径和(中等))
    • [LeetCode 65. 有效数字(困难)](#LeetCode 65. 有效数字(困难))

LeetCode 61. 旋转链表(中等)

【题目描述】

给你一个链表的头节点 head,旋转链表,将链表每个节点向右移动 k 个位置。

【示例1】

输入:head = [1,2,3,4,5], k = 2
输出:[4,5,1,2,3]

【示例2】

输入:head = [0,1,2], k = 4
输出:[2,0,1]

【提示】

链表中节点的数目在范围 [0, 500]
− 100 ≤ N o d e . v a l ≤ 100 -100\le Node.val\le 100 −100≤Node.val≤100
0 ≤ k ≤ 2 ∗ 1 0 9 0\le k\le 2 * 10^9 0≤k≤2∗109

【分析】


首先由于 k k k 可能很大,当 k k k 超过链表结点数 n n n 时,就变成了重复的循环位移,因此 k k k 需要先对 n n n 取模。

以样例1为例,示意图如上图所示,算法流程如下:

  • 先遍历一遍链表,求出链表长度 n n n,并记下最后一个结点 tail
  • 我们需要将链表的最后 k k k 个结点移动到首部,因此需要先找到倒数第 k + 1 k+1 k+1 个结点 P,也就是正数第 n − k n-k n−k 个结点,那么就需要从头结点向后遍历 n − k − 1 n-k-1 n−k−1 次;
  • tail->next = head
  • head = P->next
  • P->next = nullptr

【代码】

cpp 复制代码
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode() : val(0), next(nullptr) {}
 *     ListNode(int x) : val(x), next(nullptr) {}
 *     ListNode(int x, ListNode *next) : val(x), next(next) {}
 * };
 */
class Solution {
public:
    ListNode* rotateRight(ListNode* head, int k) {
        if (!head) return head;  // 需要特判链表为空的情况
        ListNode* tail;
        int n = 0;
        for (auto p = head; p; p = p->next) n++, tail = p;
        k %= n;
        auto p = head;
        for (int i = 0; i < n - k - 1; i++) p = p->next;
        tail->next = head, head = p->next, p->next = nullptr;
        return head;
    }
};

LeetCode 62. 不同路径(中等)

【题目描述】

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start")。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

问总共有多少条不同的路径?

【示例1】

输入:m = 3, n = 7
输出:28

【示例2】

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

【示例3】

输入:m = 7, n = 3
输出:28

【示例4】

输入:m = 3, n = 3
输出:6

【提示】

1 ≤ m , n ≤ 100 1\le m, n\le 100 1≤m,n≤100

题目数据保证答案小于等于 2 ∗ 1 0 9 2 * 10^9 2∗109

【分析】


本题是动态规划的数字三角形模型中的裸题,我们定义 f[i][j] 表示从起点走到点 (i, j) 的路径方案数,那么状态的转移有以下几种情况:

  • 如果在第一行,那么只能从左边的点转移过来,即 f[i][j] = f[i][j - 1]
  • 如果在第一列,那么只能从上边的点转移过来,即 f[i][j] = f[i - 1][j]
  • 否则既能从左边转移过来也可以从上边转移过来,即 f[i][j] = f[i][j - 1] + f[i - 1][j]

【代码】

cpp 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> f(m, vector<int>(n));
        f[0][0] = 1;
        for (int i = 0; i < m; i++)
            for (int j = 0; j < n; j++)
            {
                if (i) f[i][j] += f[i - 1][j];
                if (j) f[i][j] += f[i][j - 1];
            }
        return f[m - 1][n - 1];
    }
};

LeetCode 63. 不同路径 II(中等)

【题目描述】

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start")。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

【示例1】

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

【示例2】

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

【提示】

m = = o b s t a c l e G r i d . l e n g t h m == obstacleGrid.length m==obstacleGrid.length
n = = o b s t a c l e G r i d [ i ] . l e n g t h n == obstacleGrid[i].length n==obstacleGrid[i].length
1 ≤ m , n ≤ 100 1\le m, n\le 100 1≤m,n≤100
obstacleGrid[i][j]01

【分析】


和上一题一样,如果 (i, j) 是障碍物,则 f[i][j] = 0,即没有办法走到这个点。如果起点或者终点是障碍物,那么直接返回 0 0 0 即可。


【代码】

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n = obstacleGrid.size(), m = obstacleGrid[0].size();
        if (obstacleGrid[0][0] || obstacleGrid[n - 1][m - 1]) return 0;  // 特判起点或终点就是障碍物的情况
        vector<vector<int>> f(n, vector<int>(m));
        f[0][0] = 1;
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
                if (!obstacleGrid[i][j])  // 如果是障碍物f[i][j]就为0,直接跳过不计算
                {
                    if (i) f[i][j] += f[i - 1][j];
                    if (j) f[i][j] += f[i][j - 1];
                }
        return f[n - 1][m - 1];
    }
};

LeetCode 64. 最小路径和(中等)

【题目描述】

给定一个包含非负整数的 m x n 网格 grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

【示例1】

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

【示例2】

输入:grid = [[1,2,3],[4,5,6]]
输出:12

【提示】

m = = g r i d . l e n g t h m == grid.length m==grid.length
n = = g r i d [ i ] . l e n g t h n == grid[i].length n==grid[i].length
1 ≤ m , n ≤ 200 1\le m, n\le 200 1≤m,n≤200
0 ≤ g r i d [ i ] [ j ] ≤ 200 0\le grid[i][j]\le 200 0≤grid[i][j]≤200

【分析】


这题同样也是数字三角形模型,令 f[i][j] 表示从起点走到 (i, j) 的路径和的最小值,状态转移有如下几种情况:

  • 从上边转移过来,那么结果为从起点走到 (i - 1, j) 的路径和的最小值(f[i - 1][j])加上当前点的值,即 f[i][j] = f[i - 1][j] + grid[i][j]
  • 从左边转移过来同理,转移方程为:f[i][j] = f[i][j - 1] + grid[i][j]

根据 f[i][j] 的定义,我们要求的是最小值,因此最终的状态转移方程为:f[i][j] = min(f[i - 1][j], f[i][j - 1]) + grid[i][j]


【代码】

cpp 复制代码
class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int n = grid.size(), m = grid[0].size();
        vector<vector<int>> f(n, vector<int>(m, INT_MAX));  // 初始化为正无穷之后便于和自身取min
        f[0][0] = grid[0][0];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < m; j++)
            {
                if (i) f[i][j] = min(f[i][j], f[i - 1][j] + grid[i][j]);
                if (j) f[i][j] = min(f[i][j], f[i][j - 1] + grid[i][j]);
            }
        return f[n - 1][m - 1];
    }
};

LeetCode 65. 有效数字(困难)

【题目描述】

有效数字(按顺序)可以分成以下几个部分:

  1. 一个小数 或者整数
  2. (可选)一个 'e''E',后面跟着一个整数

小数(按顺序)可以分成以下几个部分:

  1. (可选)一个符号字符('+''-'
  2. 下述格式之一:
    • 至少一位数字,后面跟着一个点 '.'
    • 至少一位数字,后面跟着一个点 '.',后面再跟着至少一位数字
    • 一个点 '.',后面跟着至少一位数字

整数(按顺序)可以分成以下几个部分:

  1. (可选)一个符号字符('+''-'
  2. 至少一位数字

部分有效数字列举如下:["2", "0089", "-0.1", "+3.14", "4.", "-.9", "2e10", "-90E3", "3e+7", "+6e-1", "53.5e93", "-123.456e789"]

部分无效数字列举如下:["abc", "1a", "1e", "e3", "99e2.5", "--6", "-+3", "95a54e53"]

给你一个字符串 s,如果 s 是一个有效数字 ,请返回 true

【示例1】

输入:s = "0"
输出:true

【示例2】

输入:s = "e"
输出:false

【示例3】

输入:s = "."
输出:false

【提示】

1 ≤ s . l e n g t h ≤ 20 1\le s.length\le 20 1≤s.length≤20
s 仅含英文字母(大写和小写),数字(0-9),加号 '+',减号 '-',或者点 '.'

【分析】


本题需要考虑的情况有很多种,我们一个个分析:

  • e/E 的前后如果为空(在第一个或最后一个位置上),返回 false
  • xx. 或者 .xx 都是合法的,但是 .e/E 是不合法的;
  • e/E 的后面如果有 .,返回 false
  • +/- 只可能在首部或者 e/E 的后面出现一次,其余地方出现均不合法;
  • 如果 . 或者 e/E 出现次数大于1次则不合法;
  • e/E 的后面如果是 +/-,还需要判断下一位有没有内容,如果已经到字符串末尾,也是不合法;
  • 其余情况只要不是 0~9 即为不合法。

【代码】

cpp 复制代码
class Solution {
public:
    bool isNumber(string s) {
        bool has_dot = false, has_e = false;
        if (s[0] == '+' || s[0] == '-') s = s.substr(1);
        if (s.empty()) return false;  // 字符串只有+/-
        if (s[0] == '.' && (s.size() == 1 || s[1] == 'e' || s[1] == 'E')) return false;
        for (int i = 0; i < s.size(); i++)
        {
            if (s[i] == '.')
            {
                if (has_dot || has_e) return false;
                has_dot = true;
            }
            else if (s[i] == 'e' || s[i] == 'E')
            {
                if (has_e || !i || i == s.size() - 1) return false;  // 不止一次出现E或者出现在第一个或最后一个位置
                if (s[i + 1] == '+' || s[i + 1] == '-')  // E后面是正负号还需要继续判断
                {
                    if (i + 1 == s.size() - 1) return false;
                    i++;  // 跳过正负号
                }
                has_e = true;
            }
            else if (s[i] < '0' || s[i] > '9') return false;
        }
        return true;
    }
};
相关推荐
荒古前7 分钟前
龟兔赛跑 PTA
c语言·算法
Colinnian10 分钟前
Codeforces Round 994 (Div. 2)-D题
算法·动态规划
用户00993831430116 分钟前
代码随想录算法训练营第十三天 | 二叉树part01
数据结构·算法
shinelord明19 分钟前
【再谈设计模式】享元模式~对象共享的优化妙手
开发语言·数据结构·算法·设计模式·软件工程
დ旧言~26 分钟前
专题八:背包问题
算法·leetcode·动态规划·推荐算法
小俊俊的博客28 分钟前
海康RGBD相机使用C++和Opencv采集图像记录
c++·opencv·海康·rgbd相机
_WndProc43 分钟前
C++ 日志输出
开发语言·c++·算法
薄荷故人_1 小时前
从零开始的C++之旅——红黑树及其实现
数据结构·c++
m0_748240021 小时前
Chromium 中chrome.webRequest扩展接口定义c++
网络·c++·chrome