Exploring Large Language Models for Knowledge Graph Completion

本文是LLM系列文章,针对《Exploring Large Language Models for Knowledge Graph Completion》的翻译。

探索用于知识图谱补全的大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • 局限性

摘要

知识图谱在众多人工智能任务中发挥着至关重要的作用,但它们经常面临不完全性问题。在这项研究中,我们探索利用大型语言模型(LLM)来补全知识图谱。我们将知识图谱中的三元组视为文本序列,并引入了一个名为知识图谱LLM(KGLLM)的创新框架来对这些三元组进行建模。我们的技术使用三元组的实体和关系描述作为提示,并利用响应进行预测。在各种基准知识图谱上的实验表明,我们的方法在三重分类和关系预测等任务中取得了最先进的性能。我们还发现,微调相对较小的模型(例如,LLaMA-7B、ChatGLM6B)的性能优于最近的ChatGPT和GPT-4。

1 引言

2 相关工作

3 方法

4 实验

5 结论

在这项工作中,我们提出了一种新的KG补全方法,称为KG-LLM。我们的方法在KG补全任务(如三重分类和关系预测)中获得了最先进的性能。对于未来的工作,我们计划将我们的KG-LLM作为一个知识增强的语言模型应用于其他NLP任务,并结合KGs的结构信息。此外,我们将探索更有效的LLM的提示工程和上下文指令。

局限性

尽管我们的方法在使用LLM补全KG方面已经证明了有希望的结果,但它目前缺乏处理缺乏实体和关系的文本名称或描述的KG的能力。此外,我们还没有充分利用KG结构信息,这有可能显著改善结果,特别是在实体预测任务中。

相关推荐
lishaoan7716 分钟前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
二DUAN帝42 分钟前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue
zskj_zhyl1 小时前
AI健康小屋“15分钟服务圈”:如何重构社区健康生态?
大数据·人工智能·物联网
荔枝味啊~1 小时前
相机位姿估计
人工智能·计算机视觉·3d
陈纬度啊2 小时前
自动驾驶ROS2应用技术详解
人工智能·自动驾驶·unix
开开心心_Every3 小时前
全能视频处理工具介绍说明
开发语言·人工智能·django·pdf·flask·c#·音视频
xunberg3 小时前
AI Agent 实战:将 Node-RED 创建的 MCP 设备服务接入 Dify
人工智能·mcp
江瀚视野3 小时前
美团即时零售日订单突破1.2亿,即时零售生态已成了?
大数据·人工智能·零售
KaneLogger3 小时前
AI模型与产品推荐清单20250709版
人工智能·程序员·开源
中电金信3 小时前
中电金信 :十问高质量数据集:金融大模型价值重塑有“据”可循
人工智能·金融