Exploring Large Language Models for Knowledge Graph Completion

本文是LLM系列文章,针对《Exploring Large Language Models for Knowledge Graph Completion》的翻译。

探索用于知识图谱补全的大型语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 结论](#5 结论)
  • 局限性

摘要

知识图谱在众多人工智能任务中发挥着至关重要的作用,但它们经常面临不完全性问题。在这项研究中,我们探索利用大型语言模型(LLM)来补全知识图谱。我们将知识图谱中的三元组视为文本序列,并引入了一个名为知识图谱LLM(KGLLM)的创新框架来对这些三元组进行建模。我们的技术使用三元组的实体和关系描述作为提示,并利用响应进行预测。在各种基准知识图谱上的实验表明,我们的方法在三重分类和关系预测等任务中取得了最先进的性能。我们还发现,微调相对较小的模型(例如,LLaMA-7B、ChatGLM6B)的性能优于最近的ChatGPT和GPT-4。

1 引言

2 相关工作

3 方法

4 实验

5 结论

在这项工作中,我们提出了一种新的KG补全方法,称为KG-LLM。我们的方法在KG补全任务(如三重分类和关系预测)中获得了最先进的性能。对于未来的工作,我们计划将我们的KG-LLM作为一个知识增强的语言模型应用于其他NLP任务,并结合KGs的结构信息。此外,我们将探索更有效的LLM的提示工程和上下文指令。

局限性

尽管我们的方法在使用LLM补全KG方面已经证明了有希望的结果,但它目前缺乏处理缺乏实体和关系的文本名称或描述的KG的能力。此外,我们还没有充分利用KG结构信息,这有可能显著改善结果,特别是在实体预测任务中。

相关推荐
Elastic 中国社区官方博客9 分钟前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei12 分钟前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx99101343 分钟前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
安思派Anspire2 小时前
GPT-OSS 深度解析:OpenAI 最新大语言模型(LLM)架构
gpt·语言模型·架构
许泽宇的技术分享2 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生242 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
静西子3 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8283 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo3 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习
小王爱学人工智能4 小时前
OpenCV的图像金字塔
人工智能·opencv·计算机视觉