Streamlit快速入门指南

Streamlit是一个Python库,允许您创建交互式的数据科学和机器学习Web应用程序。

Streamlit介绍

Streamlit是一个Python库,允许您创建交互式的数据科学和机器学习Web应用程序。使用Streamlit,您可以快速轻松地创建自定义Web应用程序,让用户与您的数据和模型进行交互。

Streamlit旨在简单直观,专注于通过几行代码轻松创建美观和功能强大的应用程序。它包括广泛的内置小部件和工具,用于显示数据,处理用户输入和创建自定义可视化。

快速入门指南

要开始使用Streamlit,请按照以下步骤操作:

使用pip安装Streamlit:pip install streamlit 创建一个新的Python文件并导入Streamlit:import streamlit as st 使用Streamlit的API定义您的应用程序,其中包括用于创建小部件,显示数据和处理用户输入的函数。 使用命令streamlit run <filename.py>运行您的应用程序。 以下是一个简单的Streamlit应用程序示例,显示滑块小部件和绘图:

python 复制代码
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt

# 定义滑块小部件
x = st.slider('选择x的值', 0.0, 10.0, 5.0)

# 根据滑块值创建绘图
y = np.sin(x)
plt.plot(x, y)
st.pyplot()

该应用程序显示一个滑块小部件,允许用户选择x的值,然后根据该值显示正弦函数的绘图。您可以将此应用程序保存为Python文件(例如myapp.py),然后在终端中运行命令streamlit run myapp.py来运行该应用程序。

最佳实践

以下是使用Streamlit时应记住的最佳实践:

保持代码组织和模块化,清晰分离应用程序的不同组件。 使用Streamlit的缓存功能来提高性能并避免不必要的计算。 使用Streamlit的布局选项创建干净直观的用户界面。 尽可能使用Streamlit的内置小部件和工具,而不是重新发明轮子。 充分测试您的应用程序,包括边缘情况和错误处理。 考虑使用像Git这样的版本控制系统来管理您的代码并与他人合作。 通过遵循这些最佳实践,您可以创建高质量的Streamlit应用程序,易于使用,维护和扩展。

其它一些有趣的例子

Streamlit官方有一个应用程序和图表库 Streamlit Gallery,其中包括各种各样的示例,从简单的小部件到复杂的机器学习模型。

下面基于我最近的学习,提供两个有趣的实例。

文本生成器

python 复制代码
import streamlit as st
import markovify

# 读取文本文件
with open("text.txt") as f:
    text = f.read()

# 使用Markov模型生成文本
text_model = markovify.Text(text)

# 创建Streamlit应用程序
st.title("文本生成器")
with st.form(key='my_form'):
    submit_button = st.form_submit_button(label='生成文本')
    if submit_button:
        # 生成文本
        generated_text = text_model.make_sentence()
        # 显示生成的文本
        st.write(generated_text)

这个应用程序使用Markov模型生成文本。用户可以上传自己的文本文件,然后使用应用程序生成新的文本。应用程序使用Streamlit的表单小部件来处理用户输入和提交。

图像分类器

python 复制代码
import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np

# 加载模型
model = tf.keras.models.load_model('model.h5')

# 创建Streamlit应用程序
st.title("图像分类器")
uploaded_file = st.file_uploader("上传一张图片", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    # 加载图像
    image = Image.open(uploaded_file)
    # 调整图像大小
    image = image.resize((224, 224))
    # 转换为NumPy数组
    image_array = np.array(image)
    # 扩展维度
    image_array = np.expand_dims(image_array, axis=0)
    # 预测图像类别
    predictions = model.predict(image_array)
    # 获取最高概率的类别
    predicted_class = np.argmax(predictions[0])
    # 显示预测结果
    st.write("预测结果:", predicted_class)

这个应用程序使用TensorFlow模型来对上传的图像进行分类。用户可以上传一张图像,然后应用程序将使用模型对图像进行分类,并显示预测结果。应用程序使用Streamlit的文件上传小部件来处理用户输入。

相关推荐
都叫我大帅哥1 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`3 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
石迹耿千秋5 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
写写闲篇儿6 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python
Wendy14418 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
qiqiqi(^_×)8 小时前
卡在“pycharm正在创建帮助程序目录”
ide·python·pycharm
Ching·9 小时前
esp32使用ESP-IDF在Linux下的升级步骤,和遇到的坑Traceback (most recent call last):,及解决
linux·python·esp32·esp_idf升级
吗喽15434518810 小时前
用python实现自动化布尔盲注
数据库·python·自动化