pytorch中文文档学习笔记

先贴上链接

torch - PyTorch中文文档

首先我们需要安装拥有pytorch的环境

conda指令

虚拟环境的一些指令

查看所有虚拟环境 conda info -e

创建新的虚拟环境 conda create -n env_name python=3.6

删除已有环境 conda env remove -n env_name

激活某个虚拟环境 activate env_name

退出某个虚拟环境 deactivate env_name

虚拟环境重命名 先克隆一个环境再把之前的环境删了

conda create --name newName(新环境名) --clone oldName(旧环境名)

conda remove --name oldName(旧环境名) --all

复制代码
conda create -n pytorch_env python=3.10
conda activate pytorch_env

pip3 install torch torchvision 

1、torch

python 复制代码
torch.is_tensor(obj) 
#如果obj 是一个pytorch张量,则返回True

a=numpy.array([1, 2, 3])
t=torch.from_numpy(a) 
# a(ndarray) → t(Tensor)
# 将numpy.ndarray 转换为pytorch的Tensor。返回的张量tensor和numpy的ndarray共享同一内存空间。# 修改一个会导致另外一个也被修改。返回的张量不能改变大小。

t=torch.zeros(2, 3) #torch.zeros(*sizes, out=None) → Tensor
#返回一个全为0的张量,形状由可变参数sizes定义。

t=torch.ones(2, 3) #torch.ones(*sizes, out=None) → Tensor
#返回一个全为1的张量,形状由可变参数sizes定义。

t=torch.rand(2, 3) #torch.rand(*sizes, out=None) → Tensor
#返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes 定义。

t=torch.randn(1, 5) #torch.randn(*sizes, out=None) → Tensor
#返回一个张量,包含了从标准正态分布(均值为0,方差为 1,即高斯白噪声)中抽取一组随机数
#形状由可变参数sizes定义。

torch.numel(input) #返回input 张量中的元素个数
torch.eye(n, m=None, out=None) 
#返回一个2维张量,对角线位置全1,其它位置全0
# n (int ) -- 行数/m (int, optional) -- 列数.如果为None,则默认为n
# out (Tensor, optinal) - Output tensor/返回值: 对角线位置全1,其它位置全0的2维Tensor

2、torch.Tensor

相关推荐
Ulana13 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199014 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄16 分钟前
【LORA】
人工智能
智行众维18 分钟前
【用户心得】SCANeR™Studio学习笔记(六):人因工程Pack——一站式搞定驾驶模拟的多模态数据同步
笔记·学习·自动驾驶·汽车·仿真·scaner·人因工程
kissgoodbye201226 分钟前
cadence学习之基础知识
网络·学习
Jerryhut29 分钟前
Bev感知特征空间算法
人工智能
xian_wwq39 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
阿蒙Amon43 分钟前
JavaScript学习笔记:6.表达式和运算符
javascript·笔记·学习
春风LiuK1 小时前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
歌_顿1 小时前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法