2023高教社杯全国大学生数学建模竞赛C题代码解析

因为一些不可抗力,下面仅展示部分代码(第一问的部分),其余代码看文末

首先导入需要的包:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings
warnings.filterwarnings('ignore')
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
import matplotlib.font_manager as fm

读取数据:

 Read the data
'''
# data_1: 6 个蔬菜品类的商品信息
# data_2: 销售流水明细数据
# data_3: 蔬菜类商品的批发价格
# data_4: 蔬菜类商品的近期损耗率
附件 1 中,部分单品名称包含的数字编号表示不同的供应来源。
附件 4 中的损耗率反映了近期商品的损耗情况,通过近期盘点周期的数据计算得到。

'''
data_1 = pd.read_excel('../data/附件1.xlsx')
data_2 = pd.read_excel('../data/附件2.xlsx')
data_3 = pd.read_excel('../data/附件3.xlsx')
data_4 = pd.read_excel('../data/附件4.xlsx')

中间我跳过一些数据处理的部分,来看看可视化结果:

# 以季度为周期,可视化不同蔬菜品类销售量的变化趋势
# 将销售数据按照季度进行重采样
quarterly_sales = merged_data.resample('Q', on='销售日期')['销量(千克)'].sum()
# 将销售数据按照分类名称和季度进行分组,计算每个品类在每个季度的销售量
# sales_by_category = merged_data[merged_data['销售类型'] == '销售'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum() - merged_data[merged_data['销售类型'] == '退货'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum()
sales_by_category = merged_data[merged_data['销售类型'] == '销售'].groupby(['分类名称', pd.Grouper(key='销售日期', freq='Q')])['销量(千克)'].sum()
# 可视化销售量变化趋势
fig, ax = plt.subplots(figsize=(10, 6))
for category in sales_by_category.index.levels[0]:
    ax.plot(sales_by_category.loc[category].index, sales_by_category.loc[category].values, label=category)
ax.legend()
ax.set_xlabel('季度')
ax.set_ylabel('销售量(千克)')
ax.set_title('蔬菜各品类销售量变化趋势')
plt.savefig('../results/sales_num_trend.png', dpi=300, bbox_inches='tight')

热力图的部分代码:

# 计算各品类销售量之间的相关系数
corr_matrix = sales_by_quarter.corr()

# 可视化相关系数矩阵
sns.set(style='white')
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', ax=ax)
ax.set_title('蔬菜各品类销售量相关系数矩阵', fontproperties=font)
for tick in ax.get_xticklabels():
    tick.set_rotation(45)
    tick.set_fontproperties(font)
for tick in ax.get_yticklabels():
    tick.set_rotation(0)
    tick.set_fontproperties(font)
plt.xlabel('分类名称', fontproperties=font)
plt.ylabel('分类名称', fontproperties=font)
plt.savefig('../results/corr_matrix.png', dpi=300, bbox_inches='tight')
plt.show()
# 可视化相关系数矩阵
sns.set(style='white')
fig, ax = plt.subplots(figsize=(16, 16))
sns.heatmap(corr_matrix_top_veggies, annot=True, cmap='coolwarm', ax=ax)
ax.set_title('销量前15的蔬菜单品销售量相关系数矩阵', fontproperties=font)
for tick in ax.get_xticklabels():
    tick.set_rotation(45)
    tick.set_fontproperties(font)
for tick in ax.get_yticklabels():
    tick.set_rotation(0)
    tick.set_fontproperties(font)
plt.xlabel('分类名称', fontproperties=font)
plt.ylabel('分类名称', fontproperties=font)
plt.savefig('../results/corr_matrix_top_veggies.png', dpi=300, bbox_inches='tight')
plt.show()

有关思路、相关代码、讲解视频、参考文献等相关内容可以点击下方群名片哦!

相关推荐
一只码代码的章鱼33 分钟前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
艾思科蓝 AiScholar5 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
胡萝卜不甜9 小时前
数学建模论文通用模板(细节方法二)
数学建模
金融OG1 天前
99.8 金融难点通俗解释:净资产收益率(ROE)
大数据·python·线性代数·机器学习·数学建模·金融·矩阵
spssau1 天前
2025美赛倒计时,数学建模五类模型40+常用算法及算法手册汇总
算法·数学建模·数据分析·spssau
C灿灿数模2 天前
2025美赛数学建模B题思路+模型+代码+论文
数学建模
金融OG2 天前
99.12 金融难点通俗解释:毛利率
python·算法·机器学习·数学建模·金融
小笼包数模3 天前
2025年美国大学生数学建模竞赛赛前准备计划
数学建模
Better Rose3 天前
2025美赛Latex模板可直接运行!O奖自用版
数学建模·latex·template method·美赛
Better Rose3 天前
【数学建模美赛速成系列】O奖论文绘图复现代码
数学建模·matlab