python深度学习 花卉识别(整套工程)

项目所用的卷积神经网络是由两个卷积层,两个池化层,三个全连接层组成

一、概述

要想有一个神经网络来达到输入一张图片就能识别出这张图片的效果,就需要训练这个神经网络,训练神经网络这个过程的实质就是设置神经网络中的参数值,合理有效的神经网络才能实现识别。系统中使用监督学习的方式来训练这个神经网络。使用前向传播算法来获得预测值,再用损失函数表示计算预测值和正确答案之间的差距,使用反向传播算法和梯度下降算法来调整网络中的参数。

二、系统各模块具体实现

  1. 图片的采集

要事先收集这10种花的大量图片,放在指定文件夹里,作为训练集,图片数量不能太少,因为花卉的图片属于像素较高,比较复杂的图片,如果训练用的图片不够多,训练出来的神经网络模型会因为训练不足而识别准确率较低。

2.创建标签分类函数

对神经网络的训练方式的监督学习的方式,所以所有训练的图片都是事先知道分类的,那么需要一个函数来给每一种图片打上对应的不同的标签,以此来表示分类的正确结果。

3.获取图片批次函数

将图片分批次地传入神经网络里训练,这种方式提高了内存利用率。需要定义一个get_batch()来一批批地获取数据,在分成一个个batch之前,先要将图片集和标签集都转换成可识别的格式。

三、项目部分截图

​​​​​​​ 本项目用的是Alexnet网络模型结构,还有最后设计的pyqt界面(包含项目代码、训练集、项目设计文档)

相关推荐
瓦力的狗腿子几秒前
AI技术的发展为卫星控制系统研发带来的影响与思考
人工智能
人工智能AI技术21 分钟前
YOLOv9目标检测实战:用Python搭建你的第一个实时交通监控系统
人工智能
小雨中_26 分钟前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
拯救HMI的工程师33 分钟前
【拯救HMI】工业HMI字体选择:拒绝“通用字体”,适配工业场景3大要求
人工智能
摩拜芯城IC1 小时前
ATSHA204A‑STUCZ CryptoAuthentication 安全认证芯片IC
python·安全
lczdyx1 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao1 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像
AI智能观察1 小时前
从数据中心到服务大厅:数字人智能体如何革新电力行业服务模式
人工智能·数字人·智慧展厅·智能体·数字展厅
AI智能观察1 小时前
生成式AI驱动信息分发变革:GEO跃迁方向、价值锚点与企业生存指南
人工智能·流量运营·geo·ai搜索·智能营销·geo工具·geo平台
苏渡苇1 小时前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring