C# OpenVino Yolov8 Seg 分割

效果

项目

代码

复制代码
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using OpenCvSharp;

namespace OpenVino_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        String startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        String model_path;
        Core core;
        Mat image;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            // 配置图片数据
            Mat image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] det_result_array = new float[8400 * 116];
            float[] proto_result_array = new float[32 * 160 * 160];
            float[] factors = new float[4];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);
            factors[2] = image.Rows;
            factors[3] = image.Cols;

            byte[] image_data = max_image.ImEncode(".bmp");
            //存储byte的长度
            ulong image_size = Convert.ToUInt64(image_data.Length);
            // 加载推理图片数据
            core.load_input_data("images", image_data, image_size, 1);

            dt1 = DateTime.Now;
            // 模型推理
            core.infer();
            dt2 = DateTime.Now;

            // 读取推理结果
            det_result_array = core.read_infer_result<float>("output0", 8400 * 116);
            proto_result_array = core.read_infer_result<float>("output1", 32 * 160 * 160);

            SegmentationResult result_pro= new SegmentationResult(classer_path, factors);
            Mat result_image = result_pro.draw_result(result_pro.process_result(det_result_array, proto_result_array), image.Clone());

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\yolov8n-seg.onnx";
            core = new Core(model_path, "CPU");
            classer_path = "yolov8-detect-lable.txt";
        }

        private void Form1_FormClosing(object sender, FormClosingEventArgs e)
        {
            core.delet();
        }
    }
}

完整Demo下载

相关推荐
进击monkey几秒前
PandaWiki:开源企业级AI知识库工具,基于RAG架构的私有化部署方案
人工智能·开源
zy_destiny24 分钟前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
2501_9418372627 分钟前
蘑菇可食用性分类识别_YOLO11分割模型实现与优化_1
人工智能·数据挖掘
2501_9418372627 分钟前
基于YOLO11-Aux改进的圣女果目标检测实现
人工智能·目标检测·计算机视觉
莫有杯子的龙潭峡谷35 分钟前
在 Windows 系统上安装 OpenClaw
人工智能·node.js·安装教程·openclaw
Funny_AI_LAB37 分钟前
AI Agent最新重磅综述:迈向高效智能体,记忆、工具学习和规划综述
人工智能·学习·算法·语言模型·agi
zhangshuang-peta1 小时前
超越Composio:ContextForge与Peta作为集成平台的替代方案
人工智能·ai agent·mcp·peta
power 雀儿1 小时前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
X54先生(人文科技)1 小时前
元创力开源项目介绍
人工智能·架构·零知识证明
(; ̄ェ ̄)。1 小时前
机器学习入门(十八)特征降维
人工智能·机器学习